On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring

Abstract

We study some Banach lattice properties of the space L-w(1)(v) of weakly integrable functions with respect to a vector measure v defined on a delta-ring. Namely, we analyze order continuity, order density and Fatou type properties. We will see that the behavior of L-w(1)(v) differs from the case in which is defined on a sigma-algebra whenever does not satisfy certain local sigma-finiteness property.J. M. Calabuig and M. A. Juan were supported by the Ministerio de Economia y Competitividad (project MTM2008-04594). O. Delgado was supported by the Ministerio de Economia y Competitividad (project MTM2009-12740-C03-02). E. A. Sanchez Perez was supported by the Ministerio de Economia y Competitividad (project MTM2009-14483-C02-02).Calabuig Rodriguez, JM.; Delgado Garrido, O.; Juan Blanco, MA.; Sánchez Pérez, EA. (2014). On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring. Collectanea Mathematica. 65(1):67-85. doi:10.1007/s13348-013-0081-8S6785651Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures. J. Math. Anal. Appl. 45, 156–175 (1974)Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)Calabuig, J.M., Juan, M.A., Sánchez Pérez, E.A.: Spaces of pp -integrable functions with respect to a vector measure defined on a δ\delta -ring. Oper. Matrices 6, 241–262 (2012)Curbera, G.P.: El espacio de funciones integrables respecto de una medida vectorial. Ph. D. thesis, University of Sevilla, Sevilla (1992)Curbera, G.P.: Operators into L1L^1 of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992)Curbera, G.P., Ricker, W.J.: Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. (N.S.) 17, 187–204 (2006)G. P. Curbera and W. J. Ricker, Vector measures, integration and applications. In: Positivity (in Trends Math.), Birkhäuser, Basel, pp. 127–160 (2007)Curbera, G.P., Ricker, W.J.: The Fatou property in pp -convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007)Delgado, O.: L1L^1 -spaces of vector measures defined on δ\delta -rings. Arch. Math. 84, 432–443 (2005)Delgado, O.: Optimal domains for kernel operators on [0,)×[0,)[0,\infty )\times [0,\infty ) . Studia Math. 174, 131–145 (2006)Delgado, O., Soria, J.: Optimal domain for the Hardy operator. J. Funct. Anal. 244, 119–133 (2007)Delgado, O., Juan, M.A.: Representation of Banach lattices as Lw1L_w^1 spaces of a vector measure defined on a δ\delta -ring. Bull. Belg. Math. Soc. Simon Stevin 19(2), 239–256 (2012)Diestel, J., Uhl, J.J.: Vector measures (Am. Math. Soc. surveys 15). American Mathematical Society, Providence (1997)Dinculeanu, N.: Vector measures, Hochschulbcher fr Mathematik, vol. 64. VEB Deutscher Verlag der Wissenschaften, Berlin (1966)Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez Pérez, E.A.: Spaces of pp -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)Fremlin, D.H.: Measure theory, broad foundations, vol. 2. Torres Fremlin, Colchester (2001)Jiménez Fernández, E., Juan, M.A., Sánchez Pérez, E.A.: A Komlós theorem for abstract Banach lattices of measurable functions. J. Math. Anal. Appl. 383, 130–136 (2011)Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 294–307 (1972)Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces I. North-Holland, Amsterdam (1971)Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on δ\delta -rings. Adv. Math. 73, 204–241 (1989)Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math. 75, 121–167 (1989)Thomas, E.G.F.: Vector integration (unpublished) (2013)Turpin, Ph.: Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe, Intègration vectorielle et multivoque, (Colloq., University Caen, Caen, 1975), experiment no. 8, Dèp. Math., UER Sci., University Caen, Caen (1975)Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces (Oper. Theory Adv. Appl.), vol. 180. Birkhäuser, Basel (2008)Zaanen, A.C.: Riesz spaces II. North-Holland, Amsterdam (1983

    Similar works