76 research outputs found

    Data-efficient learning of feedback policies from image pixels using deep dynamical models

    Get PDF
    Data-efficient reinforcement learning (RL) in continuous state-action spaces using very high-dimensional observations remains a key challenge in developing fully autonomous systems. We consider a particularly important instance of this challenge, the pixels-to-torques problem, where an RL agent learns a closed-loop control policy ( torques ) from pixel information only. We introduce a data-efficient, model-based reinforcement learning algorithm that learns such a closed-loop policy directly from pixel information. The key ingredient is a deep dynamical model for learning a low-dimensional feature embedding of images jointly with a predictive model in this low-dimensional feature space. Joint learning is crucial for long-term predictions, which lie at the core of the adaptive nonlinear model predictive control strategy that we use for closed-loop control. Compared to state-of-the-art RL methods for continuous states and actions, our approach learns quickly, scales to high-dimensional state spaces, is lightweight and an important step toward fully autonomous end-to-end learning from pixels to torques

    Analytic Long-Term Forecasting with Periodic Gaussian Processes

    No full text
    Gaussian processes are a state-of-the-art method for learning models from data. Data with an underlying periodic structure appears in many areas, e.g., in climatology or robotics. It is often important to predict the long-term evolution of such a time series, and to take the inherent periodicity explicitly into account. In a Gaussian process, periodicity can be accounted for by an appropriate kernel choice. However, the standard periodic kernel does not allow for analytic long-term forecasting. To address this shortcoming, we re-parametrize the periodic kernel, which, in combination with a double approximation, allows for analytic longterm forecasting of a periodic state evolution with Gaussian processes. Our model allows for probabilistic long-term forecasting of periodic processes, which can be valuable in Bayesian decision making, optimal control, reinforcement learning, and robotics

    Bayesian Gait Optimization for Bipedal Locomotion

    Get PDF
    One of the key challenges in robotic bipedal locomotion is finding gait parameters that optimize a desired performance criterion, such as speed, robustness or energy efficiency. Typically, gait optimization requires extensive robot experiments and specific expert knowledge. We propose to apply data-driven machine learning to automate and speed up the process of gait optimization. In particular, we use Bayesian optimization to efficiently find gait parameters that optimize the desired performance metric. As a proof of concept we demonstrate that Bayesian optimization is near-optimal in a classical stochastic optimal control framework. Moreover, we validate our approach to Bayesian gait optimization on a low-cost and fragile real bipedal walker and show that good walking gaits can be efficiently found by Bayesian optimization. © 2014 Springer International Publishing

    Feedback Error Learning for Rhythmic Motor Primitives

    No full text
    Abstract — Rhythmic motor primitives can be used to learn a variety of oscillatory behaviors from demonstrations or reward signals, e.g., hopping, walking, running and ball-bouncing. However, frequently, such rhythmic motor primitives lead to failures unless a stabilizing controller ensures their functionality, e.g., a balance controller for a walking gait. As an ideal oscillatory behavior requires the stabilizing controller only for exceptions, e.g., to prevent failures, we devise an online learning approach that reduces the dependence on the stabilizing controller. Inspired by related approaches in model learning, we employ the stabilizing controller’s output as a feedback error learning signal for adapting the gait. We demonstrate the resulting approach in two scenarios: a rhythmic arm’s movements and gait adaptation of an underactuated biped. I

    Probabilistic movement modeling for intention inference in human-robot interaction.

    No full text
    Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes ’ theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.

    Matérn Gaussian Processes on Graphs.

    Get PDF
    Gaussian processes are a versatile framework for learning unknown functions in a manner that permits one to utilize prior information about their properties. Although many different Gaussian process models are readily available when the input space is Euclidean, the choice is much more limited for Gaussian processes whose input space is an undirected graph. In this work, we leverage the stochastic partial differential equation characterization of Mat´ern Gaussian processes—a widelyused model class in the Euclidean setting—to study their analog for undirected graphs. We show that the resulting Gaussian processes inherit various attractive properties of their Euclidean and Riemannian analogs and provide techniques that allow them to be trained using standard methods, such as inducing points. This enables graph Mat´ern Gaussian processes to be employed in mini-batch and non-conjugate settings, thereby making them more accessible to practitioners and easier to deploy within larger learning frameworks

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Queer In AI: A Case Study in Community-Led Participatory AI

    Get PDF
    Queerness and queer people face an uncertain future in the face of ever more widely deployed and invasive artificial intelligence (AI). These technologies have caused numerous harms to queer people, including privacy violations, censoring and downranking queer content, exposing queer people and spaces to harassment by making them hypervisible, deadnaming and outing queer people. More broadly, they have violated core tenets of queerness by classifying and controlling queer identities. In response to this, the queer community in AI has organized Queer in AI, a global, decentralized, volunteer-run grassroots organization that employs intersectional and community-led participatory design to build an inclusive and equitable AI future. In this paper, we present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this community’s programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory and intersectional principles, and then assess the organization’s impact. Queer in AI provides important lessons and insights for practitioners and theorists of participatory methods broadly through its rejection of hierarchy in favor of decentralization, success at building aid and programs by and for the queer community, and effort to change actors and institutions outside of the queer community. Finally, we theorize how communities like Queer in AI contribute to the participatory design in AI more broadly by fostering cultures of participation in AI, welcoming and empowering marginalized participants, critiquing poor or exploitative participatory practices, and bringing participation to institutions outside of individual research projects. Queer in AI’s work serves as a case study of grassroots activism and participatory methods within AI, demonstrating the potential of community-led participatory methods and intersectional praxis, while also providing challenges, case studies, and nuanced insights to researchers developing and using participatory methods

    Probabilistic machine learning and artificial intelligence.

    Get PDF
    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.The author acknowledges an EPSRC grant EP/I036575/1, the DARPA PPAML programme, a Google Focused Research Award for the Automatic Statistician and support from Microsoft Research.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html#abstract
    • …
    corecore