138 research outputs found

    Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation

    Get PDF
    Synthesis of methyl butyrate was investigated in a microwave irradiated batch reactor in presence of acid ion-exchange resin catalyst, amberlyst-15. Methyl ester was heterogeneously produced by the reaction between butyric acid and methanol. Effect of reaction parameters of temperature (323-343 K), catalyst loading (0-10.5% w/w), alcohol to acid ratio, M (1-5), and amount of molecular sieves added (0-13.5% w/w) on conversion were studied. Equilibrium conversion of 92.6% was achieved in 60 minutes under microwave irradiation. Equilibrium constants at varied temperatures and dependency of equilibrium constant on temperature were studied. Equilibrium constant and equilibrium conversion showed increase with the increase in temperature as expected as per le-Chatelier principle. Van't Hoff plot for esterification of butyric acid was linear with negative slope indicating that reaction was endothermic. Comparative study showed that microwave irradiated method for methyl butyrate synthesis to be very efficient and fast compared with conventional and ultrasound assisted routes under optimized reaction conditions

    Digestibility of Proteins in Legumes

    Get PDF
    Legume proteins have recently attracted interest from the food industry. Indeed, they are economical and have good nutritional and functional attributes. In addition to being important for growth and maintenance, they also provide antioxidant peptides, and are hence gaining importance for these additional health benefits. The nutritional benefits of leguminous seeds, are linked to the digestibility of the proteins into peptides and amino acids. Seed proteins have a complex structure. Coexisting with these proteins in the seed matrix, are other components that interfere with protein digestibility. Among them, are the antinutritional factors (ANFs), like trypsin inhibitors, which are also significant in animal nutrition. Thus, improving access to legume proteins, often depends on the removal of these inhibitors. Therefore, this chapter focuses on the factors affecting the efficient digestion of proteins, with emphasis on ANFs and methods to eliminate them. Enzymatic treatment is an effective method to solve the problems encountered. Exogenous enzymes, act as digestive aids and help improve protein digestibility in vivo, where digestion is impaired due to insufficient digestive enzymes. Enzymes provide an environment-friendly alternative to energy-intensive processes in the food industry. Complete digestion of legumes will prevent wastage and enhance food security, besides contributing to sustainability

    Reaching the unreached: de-mystifying the role of ICT in the process of doctoral research

    Get PDF
    Information and Communication Technology (ICT) has become a necessary element of academic practice in higher education today. Under normal circumstances, PhD students from all disciplines have to use ICT in some form throughout the process of their research, including the preparation, fieldwork, analysis and writing phases of their studies. Nevertheless, there has been little research to date that explores PhD students’ first-hand experiences of using various ICT to support their research practices. This paper brings together the findings and the key points from a review of significant parts of the existing literature associated with the role played by ICT in the processes PhD students use in doctoral research. The review is based on 27 papers appearing in international peer-reviewed journals published from 2005 to 2014. The study seeks to address the under-researched area in the current literature of how ICT plays a role in the processes of doctoral research. While there are many contributions taking the ‘institutional’ or ‘teaching’ perspectives, papers focusing on ‘student’ perspective, or the viewpoint of engaging ICT in daily study routine, are relatively fewer. As far as research methodology is concerned, this review found that many of the papers that were examined were mostly based on perception data such as surveys or interviews, while actual practice data were rarely present. With their ready access to technologies, PhD students are well positioned to take advantage of a range of technologies in order to carry out their research efficiently (in terms of means to an end) and effectively (in terms of reaching goals within a task). This review reveals that in the literature, this important area is under-represented

    Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC.</p> <p>Methods</p> <p>To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients.</p> <p>Results</p> <p>Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (<it>P </it>= 0.041), increased lymph node metastasis (<it>P </it>= 0.001), less differentiation (<it>P </it>= 0.005), increased recurrence (<it>P </it>= 0.038) and shorter survival (<it>P </it>= 0.004) of the patients.</p> <p>Conclusion</p> <p>In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC.</p

    Can working with the private for-profit sector improve utilization of quality health services by the poor? A systematic review of the literature

    Get PDF
    BACKGROUND: There has been a growing interest in the role of the private for-profit sector in health service provision in low- and middle-income countries. The private sector represents an important source of care for all socioeconomic groups, including the poorest and substantial concerns have been raised about the quality of care it provides. Interventions have been developed to address these technical failures and simultaneously take advantage of the potential for involving private providers to achieve public health goals. Limited information is available on the extent to which these interventions have successfully expanded access to quality health services for poor and disadvantaged populations. This paper addresses this knowledge gap by presenting the results of a systematic literature review on the effectiveness of working with private for-profit providers to reach the poor. METHODS: The search topic of the systematic literature review was the effectiveness of interventions working with the private for-profit sector to improve utilization of quality health services by the poor. Interventions included social marketing, use of vouchers, pre-packaging of drugs, franchising, training, regulation, accreditation and contracting-out. The search for published literature used a series of electronic databases including PubMed, Popline, HMIC and CabHealth Global Health. The search for grey and unpublished literature used documents available on the World Wide Web. We focused on studies which evaluated the impact of interventions on utilization and/or quality of services and which provided information on the socioeconomic status of the beneficiary populations. RESULTS: A total of 2483 references were retrieved, of which 52 qualified as impact evaluations. Data were available on the average socioeconomic status of recipient communities for 5 interventions, and on the distribution of benefits across socioeconomic groups for 5 interventions. CONCLUSION: Few studies provided evidence on the impact of private sector interventions on quality and/or utilization of care by the poor. It was, however, evident that many interventions have worked successfully in poor communities and positive equity impacts can be inferred from interventions that work with types of providers predominantly used by poor people. Better evidence of the equity impact of interventions working with the private sector is needed for more robust conclusions to be drawn

    Elevated Proteasome Capacity Extends Replicative Lifespan in Saccharomyces cerevisiae

    Get PDF
    Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol

    No full text
    There is uncertainty concerning the potential toxicity of zinc oxide (ZnO) nanoparticles, which may be attributed in part to a lack of understanding with regard to the physiochemical properties of the nanoparticles used in toxicological investigations. This paper reports the synthesis of a ZnO nanopowder by flame spray pyrolysis and demonstrates that the typically employed characterisation techniques such as specific surface area measurement and X-ray diffraction provide insufficient information on the sample, especially if it is intended for use in toxicity studies. Instead, a more elaborate characterisation protocol is proposed that includes particle morphology as well as detailed compositional analysis of the nanoparticle surface. Detailed transmission electron microscopy analysis illustrated the polydispersity within the sample: particles were elongated in the c-crystallographic direction, with average Ferret length ∼23 nm and Ferret width ∼14 nm. Dynamic light scattering (0.1 w/v% in deionised water, pH 7.4) revealed the particles were agglomerated with a modal secondary particle size of ∼1.5 μm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated the presence of carbonate and hydroxide impurities on the surface of the ZnO nanoparticles and an increase of such impurities was observed as the sample was aged, which might influence the nanoparticle dissolution and/or cellular uptake behaviour. These data will be utilised, in order to facilitate the interpretation and understanding of results from toxicological investigations using in vitro cell lines
    corecore