45,912 research outputs found
Distributed Computing with Adaptive Heuristics
We use ideas from distributed computing to study dynamic environments in
which computational nodes, or decision makers, follow adaptive heuristics (Hart
2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly
"best replying" to others' actions, and minimizing "regret", that have been
extensively studied in game theory and economics. We explore when convergence
of such simple dynamics to an equilibrium is guaranteed in asynchronous
computational environments, where nodes can act at any time. Our research
agenda, distributed computing with adaptive heuristics, lies on the borderline
of computer science (including distributed computing and learning) and game
theory (including game dynamics and adaptive heuristics). We exhibit a general
non-termination result for a broad class of heuristics with bounded
recall---that is, simple rules of behavior that depend only on recent history
of interaction between nodes. We consider implications of our result across a
wide variety of interesting and timely applications: game theory, circuit
design, social networks, routing and congestion control. We also study the
computational and communication complexity of asynchronous dynamics and present
some basic observations regarding the effects of asynchrony on no-regret
dynamics. We believe that our work opens a new avenue for research in both
distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion
of v1. Revised version will appear in the proceedings of Innovations in
Computer Science 201
Analysis of electromagnetic waves on a dielectric rod immersed in a plasma including a discussion of diagnostic applications
Guided electromagnetic waves propagating along lossless dielectric rod immersed in isotropic and uniaxial plasmas determined for applications to plasma diagnostic
What's the evidence that NICE guidance has been implemented? Results from a national evaluation using time series analysis, audit of patients' notes, and interviews
OBJECTIVES: To assess the extent and pattern of implementation of guidance issued by the National Institute for Clinical Excellence (NICE). DESIGN: Interrupted time series analysis, review of case notes, survey, and interviews. SETTING: Acute and primary care trusts in England and Wales. PARTICIPANTS: All primary care prescribing, hospital pharmacies; a random sample of 20 acute trusts, 17 mental health trusts, and 21 primary care trusts; and senior clinicians and managers from five acute trusts. MAIN OUTCOME MEASURES: Rates of prescribing and use of procedures and medical devices relative to evidence based guidance. RESULTS: 6308 usable patient audit forms were returned. Implementation of NICE guidance varied by trust and by topic. Prescribing of some taxanes for cancer (P <0.002) and orlistat for obesity (P <0.001) significantly increased in line with guidance. Prescribing of drugs for Alzheimer’s disease and prophylactic extraction of wisdom teeth showed trends consistent with, but not obviously a consequence of, the guidance. Prescribing practice often did not accord with the details of the guidance. No change was apparent in the use of hearing aids, hip prostheses, implantable cardioverter defibrillators, laparoscopic hernia repair, and laparoscopic colorectal cancer surgery after NICE guidance had been issued. CONCLUSIONS: Implementation of NICE guidance has been variable. Guidance seems more likely to be adopted when there is strong professional support, a stable and convincing evidence base, and no increased or unfunded costs, in organisations that have established good systems for tracking guidance implementation and where the professionals involved are not isolated. Guidance needs to be clear and reflect the clinical context
Metastable helium molecules as tracers in superfluid liquid He
Metastable helium molecules generated in a discharge near a sharp tungsten
tip operated in either pulsed mode or continuous field-emission mode in
superfluid liquid He are imaged using a laser-induced-fluorescence
technique. By pulsing the tip, a small cloud of He molecules is
produced. At 2.0 K, the molecules in the liquid follow the motion of the normal
fluid. We can determine the normal-fluid velocity in a heat-induced counterflow
by tracing the position of a single molecule cloud. As we run the tip in
continuous field-emission mode, a normal-fluid jet from the tip is generated
and molecules are entrained in the jet. A focused 910 nm pump laser pulse is
used to drive a small group of molecules to the vibrational state.
Subsequent imaging of the tagged molecules with an expanded 925 nm probe
laser pulse allows us to measure the velocity of the normal fluid. The
techniques we developed demonstrate for the first time the ability to trace the
normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let
On the inverse cascade of magnetic helicity
We study the inverse cascade of magnetic helicity in conducting fluids by
investigating the detailed transfer of helicity between different spherical
shells in Fourier space in direct numerical simulations of three-dimensional
magnetohydrodynamics (MHD). Two different numerical simulations are used, one
where the system is forced with an electromotive force in the induction
equation, and one in which the system is forced mechanically with an ABC flow
and the magnetic field is solely sustained by a dynamo action. The magnetic
helicity cascade at the initial stages of both simulations is observed to be
inverse and local (in scale space) in the large scales, and direct and local in
the small scales. When saturation is approached most of the helicity is
concentrated in the large scales and the cascade is non-local. Helicity is
transfered directly from the forced scales to the largest scales. At the same
time, a smaller in amplitude direct cascade is observed from the largest scale
to small scales.Comment: Submitted to PR
Disentangling the spatial substructure of Cygnus OB2 from Gaia DR2
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyFor the first time, we have explored the spatial substructure of the Cygnus OB2 association using parallaxes from the recent second Gaia data release. We find significant line-of-sight substructure within the association, which we quantify using a parametrized model that reproduces the observed parallax distribution. This inference approach is necessary due to the non-linearity of the parallax distance transformation and the asymmetry of the resulting probability distribution. Using a Markov Chain Monte Carlo ensemble sampler and an unbinned maximum likelihood test, we identify two different stellar groups superposed on the association. We find the main Cygnus OB2 group at ∼1760 pc, further away than recent estimates have envisaged, and a foreground group at ∼1350 pc. We also calculate individual membership probabilities and identify outliers as possible non-members of the association.Peer reviewe
Synthetic magnetism for photon fluids
We develop a theory of artificial gauge fields in photon fluids for the cases
of both second-order and third-order optical nonlinearities. This applies to
weak excitations in the presence of pump fields carrying orbital angular
momentum, and is thus a type of Bogoliubov theory. The resulting artificial
gauge fields experienced by the weak excitations are an interesting
generalization of previous cases and reflect the PT-symmetry properties of the
underlying non-Hermitian Hamiltonian. We illustrate the observable consequences
of the resulting synthetic magnetic fields for examples involving both
second-order and third-order nonlinearities
Interference of a thermal Tonks gas on a ring
A nonzero temperature generalization of the Fermi-Bose mapping theorem is
used to study the exact quantum statistical dynamics of a one-dimensional gas
of impenetrable bosons on a ring. We investigate the interference produced when
an initially trapped gas localized on one side of the ring is released, split
via an optical-dipole grating, and recombined on the other side of the ring.
Nonzero temperature is shown not to be a limitation to obtaining high
visibility fringes.Comment: 4 pages, 3 figure
- …