37,215 research outputs found

    Frequency dependence of electrical conductivity and dielectric constant of UO2

    Get PDF
    The dielectric constant and electrical conductivity of single crystal and polycrystalline UO2 are found to be frequency dependent. The dielectric constant measured at low frequencies is anomalously large at room temperature but decreases to a limiting value (~25) below about 130 K. A knee observed in the temperature dependence of the conductivity of polycrystalline UO2 corresponds to a process having an activation energy of 0.15 eV

    Type-Constrained Representation Learning in Knowledge Graphs

    Full text link
    Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data

    myTrustedCloud: Trusted cloud infrastructure for security-critical computation and data managment

    Get PDF
    Copyright @ 2012 IEEECloud Computing provides an optimal infrastructure to utilise and share both computational and data resources whilst allowing a pay-per-use model, useful to cost-effectively manage hardware investment or to maximise its utilisation. Cloud Computing also offers transitory access to scalable amounts of computational resources, something that is particularly important due to the time and financial constraints of many user communities. The growing number of communities that are adopting large public cloud resources such as Amazon Web Services [1] or Microsoft Azure [2] proves the success and hence usefulness of the Cloud Computing paradigm. Nonetheless, the typical use cases for public clouds involve non-business critical applications, particularly where issues around security of utilization of applications or deposited data within shared public services are binding requisites. In this paper, a use case is presented illustrating how the integration of Trusted Computing technologies into an available cloud infrastructure - Eucalyptus - allows the security-critical energy industry to exploit the flexibility and potential economical benefits of the Cloud Computing paradigm for their business-critical applications

    Developing a health state classification system from NEWQOL for epilepsy using classical psychometric techniques and Rasch analysis: a technical report

    Get PDF
    Aims: Resource allocation amongst competing health care interventions is informed by evidence of both clinical- and cost-effectiveness. Cost-utility analysis is increasingly used to assess cost effectiveness through the use of Quality Adjusted Life Years (QALYs). This requires health state values. Generic measures of health related quality of life (HRQL) are usually used to produce these values, but there are concerns about their relevance and sensitivity in epilepsy. This study develops a health state classification system for epilepsy from the NEWQOL battery, a validated questionnaire measuring QoL in epilepsy. The classification system will be amenable to valuation for calculating QALYs. Methods: Factor and other psychometric analyses were undertaken to investigate the factor structure of the battery, and assess the validity and responsiveness of the items. These analyses were used alongside Rasch analysis to select the dimensions included in the classification system, and the items used to represent each domain. Analysis was carried out on a trial dataset of patients with epilepsy (n=1611). Rasch and factor analysis were performed on one half of the sample and validated on the remaining half. Dimensions and items were selected that performed well across all analyses. Results: The battery was found to demonstrate reliability and validity but responsiveness across time periods for many of the items was low. A six dimension classification system was developed: worry about seizures, depression, memory, cognition, stigmatism and control, each with four response levels. Conclusions: It is feasible to develop a health state classification system from a battery of instruments using a combination of classical psychometric, factor and Rasch analysis. This is the first condition-specific health state classification developed for epilepsy and the next stage will produce preference weights to enable the measure to be used in cost-utility analysis.quality adjusted life years; health related quality of life; Rasch analysis; preference-based measures of health; health states; epilepsy

    Developing a health state classification system from NEWQOL for epilepsy using classical psychometric techniques and Rasch analysis: A technical report

    Get PDF
    Aims: Resource allocation amongst competing health care interventions is informed by evidence of both clinical- and cost-effectiveness. Cost-utility analysis is increasingly used to assess cost effectiveness through the use of Quality Adjusted Life Years (QALYs). This requires health state values. Generic measures of health related quality of life (HRQL) are usually used to produce these values, but there are concerns about their relevance and sensitivity in epilepsy. This study develops a health state classification system for epilepsy from the NEWQOL battery, a validated questionnaire measuring QoL in epilepsy. The classification system will be amenable to valuation for calculating QALYs. Methods: Factor and other psychometric analyses were undertaken to investigate the factor structure of the battery, and assess the validity and responsiveness of the items. These analyses were used alongside Rasch analysis to select the dimensions included in the classification system, and the items used to represent each domain. Analysis was carried out on a trial dataset of patients with epilepsy (n=1611). Rasch and factor analysis were performed on one half of the sample and validated on the remaining half. Dimensions and items were selected that performed well across all analyses. Results: The battery was found to demonstrate reliability and validity but responsiveness across time periods for many of the items was low. A six dimension classification system was developed: worry about seizures, depression, memory, cognition, stigmatism and control, each with four response levels. Conclusions: It is feasible to develop a health state classification system from a battery of instruments using a combination of classical psychometric, factor and Rasch analysis. This is the first condition-specific health state classification developed for epilepsy and the next stage will produce preference weights to enable the measure to be used in cost-utility analysis

    Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”

    Get PDF
    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view

    Large-Scale Structures Behind the Milky Way from Near-IR Surveys

    Get PDF
    About 25% of the optical extragalactic sky is obscured by the dust and stars of our Milky Way. Dynamically important structures might still lie hidden in this zone. Various approaches are presently being employed to uncover the galaxy distribution in the Zone of Avoidance (ZOA) but all suffer from (different) limitations and selection effects. We investigated the potential of using the DENIS NIR survey for studies of galaxies behind the obscuration layer of our Milky Way and for mapping the Galactic extinction. As a pilot study, we recovered DENIS I, J and K band images of heavily obscured but optically still visible galaxies. We determined the I, J and K band luminosity functions of galaxies on three DENIS strips that cross the center of the nearby, low-latitude, rich cluster Abell 3627. The extinction-corrected I-J and J-K colours of these cluster galaxies compare well with that of an unobscured cluster. We searched for and identified galaxies at latitudes where the Milky Way remains fully opaque (|b| 4-5mag) - in a systematic search as well as around positions of galaxies detected with the blind HI survey of the ZOA currently conducted with the Multibeam Receiver of the Parkes Radiotelescope.Comment: 12 pages, including 5 PS figures, LaTeX, uses crckapb.sty and epsf.tex. Better resolved figures available upon request. To appear in proceedings of the 3rd Euroconference (Meudon, France, June 1997) on ``The Impact of Near IR Surveys'', Kluwer 199

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues

    Full text link
    State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting, close form expressions, are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method these predictions are compared with corresponding 3-D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations
    • …
    corecore