790 research outputs found

    Radiative corrections for (e,e′p) reactions at GeV energies

    Get PDF
    A general framework for applying radiative corrections to (e,e′p) coincidence reactions at GeV energies is presented, with special emphasis to higher-order bremsstrahlung effects, radiation from the scattered hadron, and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying radiative corrections to (e,e′p) data is extensively discussed. The general framework is tested against experimental data of the 1H(e,e′p) reaction at momentum transfer values larger than 1.0 (GeV/c)^2, where radiative processes become a dominant source of uncertainty. The formulas presented here can easily be modified for any other electron-induced coincidence reaction

    Quark-hadron duality in a relativistic, confining model

    Get PDF
    Quark-hadron duality is an interesting and potentially very useful phenomenon, as it relates the properly averaged hadronic data to a perturbative QCD result in some kinematic regions. While duality is well established experimentally, our current theoretical understanding is still incomplete. We employ a simple model to qualitatively reproduce all the features of Bloom-Gilman duality as seen in electron scattering. In particular, we address the role of relativity, give an explicit analytic proof of the equality of the hadronic and partonic scaling curves, and show how the transition from coherent to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan Isgur. (34 pages, 13 figures

    Qweak: A Precision Measurement of the Proton's Weak Charge

    Full text link
    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q2Q^2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Qwp=14sin2θwQ_w^p = 1-4 \sin^2 \theta_w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003 proceeding

    Scaling study of the pion electroproduction cross sections and the pion form factor

    Full text link
    The 1^{1}H(e,eπ+e,e^\prime \pi^+)n cross section was measured for a range of four-momentum transfer up to Q2Q^2=3.91 GeV2^2 at values of the invariant mass, WW, above the resonance region. The Q2Q^2-dependence of the longitudinal component is consistent with the Q2Q^2-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of Q2Q^2. Pion form factor results, while consistent with the Q2Q^2-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at Q2Q^2=3.91 GeV2^2.Comment: 6 pages, 3 figure

    Study of the A(e,e'π+\pi^+) Reaction on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au

    Full text link
    Cross sections for the p(e,eπ+e,e'\pi^{+})n process on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from Q2Q^2=1.1 to 4.8 GeV2^2 for a fixed center of mass energy of WW=2.14 GeV. The ratio of σL\sigma_L and σT\sigma_T was extracted from the measured cross sections for 1^1H, 2^2H, 12^{12}C and 63^{63}Cu targets at Q2Q^2 = 2.15 and 4.0 GeV2^2 allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of Q2Q^2 are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p(e,eπ+e,e'\pi^{+})n reaction from nuclear targets.Comment: 28 pages, 19 figures, submited to PR

    Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    Full text link
    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1x>1, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure
    corecore