3,612 research outputs found
The Pipeline Project: A Holistic Approach to Teaching Multimedia
The multimedia industry has embraced the integration of computer software packages. The industry recognizes that better integration and compatibility of software and hardware will produce better end results and improve workflow. In fact, many of the major software developers are now introducing suites of products. Surely, educational establishments should follow suit and develop courses in which differing but complementary subject areas (modules) are integrated. The main area of development at Leeds Metropolitan University has been to allow students to clearly see the aims and objectives of each module but within a more global project. Not only has this holistic approach benefited the students, it has also allowed staff to develop material that extends across modules, allows for team teaching, and integrates the lecture program. This logical approach to project work echoes the skills required in the multimedia industry
Generation of folk song melodies using Bayes transforms
The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models
Enhancing User Immersion and Virtual Presence in Interactive Multiuser Virtual Environments through the Development and Integration of a Gesture-Centric Natural User Interface Developed from Existing Virtual Reality Technologies
Immersion, referring to the level of physical or psychological submergence of a user within a virtual space relative to that user's consciousness of the real-world environment, has predominantly been established as an indispensable part of interactive media designs. This is most prevalent in Virtual Reality (VR) platforms, as their applications are typically reliant on user believability. With a wide variation of possible methodologies for the enhancement of this feature, the collectively recognised paradigm lies on the emphasis of naturalism in the design of the virtual system [7]. Though widely used by some specialised VR applications [4] such concepts are yet to be fully explored in the more contemporary virtual systems such as Social Immersive Virtual Environment (SIVE). The focus of the study described in this paper are the techniques being developed to enhance user immersion, virtual presence and co-presence in a SIVE application, through the design and integration of a VR-based Natural User Interface (NUI) that allows users to naturally and intuitively interact with the virtual environment and other networked users through the utilisation of full body gesture controls. These gestural controls prioritise the emulation of the alternate equivalent of such real-wold interactions, whilst also providing an interface for the seamless and unobtrusive translation of the user's real-world physical state into the virtual environment through intuitive user to virtual avatar proprioceptive coordination. © Springer International Publishing Switzerland 2014
Integrating Brain and Biomechanical Models—A New Paradigm for Understanding Neuro-muscular Control
To date, realistic models of how the central nervous system governs behavior have been restricted in scope to the brain, brainstem or spinal column, as if these existed as disembodied organs. Further, the model is often exercised in relation to an in vivo physiological experiment with input comprising an impulse, a periodic signal or constant activation, and output as a pattern of neural activity in one or more neural populations. Any link to behavior is inferred only indirectly via these activity patterns. We argue that to discover the principles of operation of neural systems, it is necessary to express their behavior in terms of physical movements of a realistic motor system, and to supply inputs that mimic sensory experience. To do this with confidence, we must connect our brain models to neuro-muscular models and provide relevant visual and proprioceptive feedback signals, thereby closing the loop of the simulation. This paper describes an effort to develop just such an integrated brain and biomechanical system using a number of pre-existing models. It describes a model of the saccadic oculomotor system incorporating a neuromuscular model of the eye and its six extraocular muscles. The position of the eye determines how illumination of a retinotopic input population projects information about the location of a saccade target into the system. A pre-existing saccadic burst generator model was incorporated into the system, which generated motoneuron activity patterns suitable for driving the biomechanical eye. The model was demonstrated to make accurate saccades to a target luminance under a set of environmental constraints. Challenges encountered in the development of this model showed the importance of this integrated modeling approach. Thus, we exposed shortcomings in individual model components which were only apparent when these were supplied with the more plausible inputs available in a closed loop design. Consequently we were able to suggest missing functionality which the system would require to reproduce more realistic behavior. The construction of such closed-loop animal models constitutes a new paradigm of computational neurobehavior and promises a more thoroughgoing approach to our understanding of the brain’s function as a controller for movement and behavior
Robust Estimators in Generalized Pareto Models
This paper deals with optimally-robust parameter estimation in generalized
Pareto distributions (GPDs). These arise naturally in many situations where one
is interested in the behavior of extreme events as motivated by the
Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have
in mind is calculation of the regulatory capital required by Basel II for a
bank to cover operational risk. In this context the tail behavior of the
underlying distribution is crucial. This is where extreme value theory enters,
suggesting to estimate these high quantiles parameterically using, e.g. GPDs.
Robust statistics in this context offers procedures bounding the influence of
single observations, so provides reliable inference in the presence of moderate
deviations from the distributional model assumptions, respectively from the
mechanisms underlying the PBHT.Comment: 26pages, 6 figure
Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease
Chronic rhinosinusitis (CRS) is a common inflammatory disease of the sinonasal cavity mediated, in part, by polymicrobial communities of bacteria. Recent molecular studies have confirmed the importance of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) in CRS. Here, we hypothesize that interaction between S. pneumoniae and NTHi mixed-species communities cause a change in bacterial virulence gene expression. We examined CRS as a model human disease to validate these polymicrobial interactions. Clinical strains of S. pneumoniae and NTHi were grown in mono- and coculture in a standard biofilm assay. Reverse transcriptase real-time PCR (RTqPCR) was used to measure gene expression of key virulence factors. To validate these results, we investigated the presence of the bacterial RNA transcripts in excised human tissue from patients with CRS. Consequences of physical or chemical interactions between microbes were also investigated. Transcription of NTHi type IV pili was only expressed in co-culture in vitro, and expression could be detected ex vivo in diseased tissue. S. pneumoniae pyruvate oxidase was up-regulated in co-culture, while pneumolysin and pneumococcal adherence factor A were down-regulated. These results were confirmed in excised human CRS tissue. Gene expression was differentially regulated by physical contact and secreted factors. Overall, these data suggest that interactions between H. influenzae and S. pneumoniae involve physical and chemical mechanisms that influence virulence gene expression of mixed-species biofilm communities present in chronically diseased human tissue. These results extend previous studies of population-level virulence and provide novel insight into the importance of S. pneumoniae and NTHi in CRS
Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton
Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening
- …
