78 research outputs found

    Use of Ar pellet ablation rate to estimate initial runaway electron seed population in DIII-D rapid shutdown experiments

    Get PDF
    Small (2-3 mm, 0.9-2 Pa • m3) argon pellets are used in the DIII-D tokamak to cause rapid shutdown (disruption) of discharges. The Ar pellet ablation is typically found to be much larger than expected from the thermal plasma electron temperature alone; the additional ablation is interpreted as being due to non-thermal runaway electrons (REs) formed during the pellet-induced temperature collapse. Simple estimates of the RE seed current using the enhanced ablation rate give values of order 1-10 kA, roughly consistent with estimates based on avalanche theory. Analytic estimates of the RE seed current based on the Dreicer formula tend to significantly underestimate it, while estimates based on the hot tail model significantly overestimate it

    Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D

    Get PDF
    Controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z but peaks at intermediate Z similar to 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly well correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears to be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-20x less than expected, suggesting that the RE energy dissipation at low Z is not fully understood. Published by AIP Publishing.This work was supported in part by the U.S. Department of Energy under Nos. DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC52-07NA27344, and DE-AC05-06OR23100 and in part by the Spanish Direccion General de Investigacion Cientifica y Tecnica under Projects ENE2012–31753 and ENE2015-66444R (MINECO/FEDERE, UE). DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMPPublicad

    Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D

    Full text link
    A severe consequence of a disruption on large tokamaks such as ITER could be the generation of multi-megaelectronvolt electron beams that could damage the vacuum vessel and the structures of the machine if they hit the wall unmitigated. The mitigation of runaway electron beams is thus a key requirement for reliable operation of ITER. In order to achieve reliable disruption mitigation, a new fast shutdown technique has been developed: the injection of a large shattered cryogenic pellet in the plasma, which is expected to increase the electron density up to levels where the beam generation processes are mitigated by collisional losses. This technique has been implemented and tested for the first time ever on DIII-D. The first tests show evidence of an almost instantaneous deposition of more than 260 Pa m3 of deuterium deep in the core. Record local densities during the thermal quench were observed for each injection with a very high reliability. Pellet mass and plasma energy content scans show an improvement of the assimilation of the particles for higher plasma energy and larger pellet mass.</jats:p
    corecore