21 research outputs found

    Predictive model of biliocystic communication in liver hydatid cysts using classification and regression tree analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incidence of liver hydatid cyst (LHC) rupture ranged 15%-40% of all cases and most of them concern the bile duct tree. Patients with biliocystic communication (BCC) had specific clinic and therapeutic aspect. The purpose of this study was to determine witch patients with LHC may develop BCC using classification and regression tree (CART) analysis</p> <p>Methods</p> <p>A retrospective study of 672 patients with liver hydatid cyst treated at the surgery department "A" at Ibn Sina University Hospital, Rabat Morocco. Four-teen risk factors for BCC occurrence were entered into CART analysis to build an algorithm that can predict at the best way the occurrence of BCC.</p> <p>Results</p> <p><b>I</b>ncidence of BCC was 24.5%. Subgroups with high risk were patients with jaundice and thick pericyst risk at 73.2% and patients with thick pericyst, with no jaundice 36.5 years and younger with no past history of LHC risk at 40.5%. Our developed CART model has sensitivity at 39.6%, specificity at 93.3%, positive predictive value at 65.6%, a negative predictive value at 82.6% and accuracy of good classification at 80.1%. Discriminating ability of the model was good 82%.</p> <p>Conclusion</p> <p>we developed a simple classification tool to identify LHC patients with high risk BCC during a routine clinic visit (only on clinical history and examination followed by an ultrasonography). Predictive factors were based on pericyst aspect, jaundice, age, past history of liver hydatidosis and morphological Gharbi cyst aspect. We think that this classification can be useful with efficacy to direct patients at appropriated medical struct's.</p

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University MĂŒnster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    IL-4 Gene Transfer for the Treatment of Experimental Gliomas

    No full text
    Current treatments of malignant brain tumors have failed to change significantly the outcome of patients with glioblastoma [1]. This led to the search for novel modalities of treatment, including immunotherapy. The rationale for immunotherapy of malignant gliomas derives from the finding that lymphocytic infiltrates, when present in primary brain tumors, are associated with improved prognosis [2], even though the T cell dependent arm of the immune response is generally depressed in glioma patients [3\u20135]. Therefore, immunotherapy approaches primarily relying on immune mechanisms that are not dependent on T cells might be therapeutically advantageous

    Eradication of rat malignant gliomas by retroviral-mediated, in vivo delivery of the interleukin 4 gene

    No full text
    Overexpression of interleukin 4 (IL-4) can impair the tumorigenicity of glioma cells, but direct evidence of its antitumor efficacy after in vivo gene transfer into malignant gliomas has not been provided. To test this, we first injected into the brain of Sprague Dawley rats a 1:1 mixture of C6 rat glioblastoma cells and psi2.L4SN20 or E86.L4SN50 retroviral producer cells (RPCs), secreting 20 and 50 ng of IL-4/5 x 10(5) cells/48 h, respectively. Twenty-seven and 56% of rats receiving injections with these low- or medium-level IL-4 RPCs, respectively, survived tumor injection, whereas control rats died in about 1 month. E86.L4SN50 RPCs coinjected with 9L gliosarcoma cells into syngeneic Fischer 344 rats yielded similar results. A novel IL-4 RPC clone expressing higher levels of IL-4, E86.L4SN200, coinjected with 9L cells increased to 75% the fraction of long-term survivors and induced tumor regression in 50% of rats when injected into established 9L gliosarcomas. Cured rats developed an immunological memory because they rejected a challenge of wild-type 9L cells into the contralateral hemisphere. Magnetic resonance imaging was used to monitor 9L and C6 gliomas and gave direct evidence for tumor rejection in treated rats. Immunohistology showed inflammatory infiltrates in IL-4-treated tumors in which CD8+ T lymphocytes were more abundant, although CD4+ T lymphocytes, B lymphocytes, and macrophages were also present. Overall, these findings suggest that IL-4 gene transfer is a new, promising approach for treating malignant gliomas

    Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene

    No full text
    The growth of U-87 or C6 gliomas co-implanted in nude mice with retroviral producer cells (VPC) expressing the herpes simplex virus-thymidine kinase (HSV-tk) gene is only partially impaired by treatment with ganciclovir (GCV). The effect of GCV is even less evident when C6 and VPC are co-implanted into the rat brain. Furthermore, tumors from C6 cells carrying the HSV-tk gene are not eradicated by GCV, although they remain sensitive to GCV when replated in vitro. These limits of the HSV-tk/GCV system in glioma gene therapy may be due to insufficient gene transfer and/or insufficient delivery of GCV to glioma cells. Combination of HSV-tk and one or more cytokines may improve the antitumor efficacy. Among cytokines, interleukin-4 (IL-4) has already been shown to be active against gliomas. In nude mice, GCV treatment inhibited tumor growth more effectively after co-injection of C6 cells with a mixture of VPC transducing IL-4 and HSV-tk genes than after co-injection with either IL-4 or HSV-tk VPC only. In immunocompetent Sprague-Dawley rats, co-injection of IL-4 VPC and C6 cells was also effective in inhibiting the growth of C6 brain tumors, 38% of the animals surviving for at least 2 months. Furthermore, increased and prolonged antitumor efficacy was obtained by transducing both IL-4 and HSV-tk genes
    corecore