268 research outputs found

    A rare case report on double J stenting in a rare case antepartum patient with right sided hydronephrosis and hydroureter

    Get PDF
    Gestational hydronephrosis (GH) is caused due to dilatation effect of the progesterone as well as physical pressure of the gravid uterus. In pregnancy, its management is challenging as routine radiological investigations and surgical treatments cannot be performed due to the potential harm to the foetus. Women who fail to respond to conservative methods require intervention. Acute hydronephrosis and renal colic are common aetiologies for loin pain, and can lead to severe form of urinary tract infection affecting perinatal outcome. Double J (DJ) stenting during pregnancy is safe, requiring no intra-operative imaging, and inserted under local anaesthesia. It provides good symptom relief, low complication rate, efficient and safe modality for women with refractory symptoms. Multidisciplinary approach to this procedure is advised

    Development of bioconjugated nano-molecules against targeted microbial pathogens for enhanced bactericidal activity

    Get PDF
    The study reports development of bio-conjugated nano-molecules (BCM's) for enhanced antibacterial activity against targeted pathogens of global concern. The conjugation was achieved with biomolecular interaction of silver clusters with 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ) which was purified and characterized with TLC which displayed prominent band at R-f 0.5 and HPLC analysis displayed chromatographic peak eluting at (t(R)) 6-8 min. The LC-MS analysis displayed single major peak at t(R) = 4.610 corresponding to molecular ion peak at m/z = 227.19. The developed BCM molecule was determined with UV-Visible spectroscopy which displayed the absorbance peaks of conjugated molecules with shoulder peak observed and morphological characteristics were well defined with TEM analysis which showed cluster formation. The size ranged from 20 to 80 nm in size with majority of the BCM displaying spherical in size. The process of bio-conjugation was further studied with FTIR analysis which corresponded with different vibrational stretches owing to the presence of amide, carbonyl alkynes, nitriles and carboxylic acid groups. The presence of functional moieties was also studied using H-1 and C-13 NMR spectra. The crystalline characteristics was confirmed with XRD analysis which displayed Bragg's intensities along with additional peaks occurring at 2 theta angle corresponds to (111), (200), (220), (311) face centric cube of silver planes. The antibacterial activity of BCM's was profound against all the test pathogen which was validated and compared with standard antibiotics. Among the test pathogens, highest activity was conferred against Staphylococcus epidermidis (MTCC 435) with 29 mm. The minimal inhibition concentration of BCM's was in the range of 0.97-3.12 mu g/ml. The results of MIC were in accordance with well diffusion assay indicating the Gram + ve test pathogen Staphylococcus epidermidis to be the most sensitive. In addition, the broth dilution assay resulted in decrease in the optical density measured at 600 nm against the increase in the concentration of BCM's. The outcome of the present investigation revealed the role of bio-conjugation chemistry to increase fold activity against pathogens which can act as alternative tool to combat drug resistant menace across the globe

    Impact of Peptide Structure on Colonic Stability and Tissue Permeability

    Get PDF
    Most marketed peptide drugs are administered parenterally due to their inherent gastrointestinal (GI) instability and poor permeability across the GI epithelium. Several molecular design techniques, such as cyclisation and D-amino acid (D-AA) substitution, have been proposed to improve oral peptide drug bioavailability. However, very few of these techniques have been translated to the clinic. In addition, little is known about how synthetic peptide design may improve stability and permeability in the colon, a key site for the treatment of inflammatory bowel disease and colorectal cancer. In this study, we investigated the impact of various cyclisation modifications and D-AA substitutions on the enzymatic stability and colonic tissue permeability of native oxytocin and 11 oxytocin-based peptides. Results showed that the disulfide bond cyclisation present in native oxytocin provided an improved stability in a human colon model compared to a linear oxytocin derivative. Chloroacetyl cyclisation increased native oxytocin stability in the colonic model at 1.5 h by 30.0%, whereas thioether and N-terminal acetylated cyclisations offered no additional protection at 1.5 h. The site and number of D-AA substitutions were found to be critical for stability, with three D-AAs at Tyr, Ile and Leu, improving native oxytocin stability at 1.5 h in both linear and cyclic structures by 58.2% and 79.1%, respectively. Substitution of three D-AAs into native cyclic oxytocin significantly increased peptide permeability across rat colonic tissue; this may be because D-AA substitution favourably altered the peptide’s secondary structure. This study is the first to show how the strategic design of peptide therapeutics could enable their delivery to the colon via the oral route

    Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation

    Get PDF
    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically viable method for measuring TLBF and hepatic arterial flow. Online supplemental material is available for this article

    Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging-preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis

    Get PDF
    Purpose: MR elastography and magnetization-tagging use liver stiffness (LS) measurements to diagnose fibrosis but require physical drivers, specialist sequences and post-processing. Here we evaluate non-rigid registration of dynamic two-dimensional cine MRI images to measure cardiac-induced liver deformation (LD) as a measure of LS by (i) assessing preclinical proof-of-concept, (ii) clinical reproducibility and inter-reader variability, (iii) the effects of hepatic hemodynamic changes and (iv) feasibility in patients with cirrhosis. / Methods: Sprague–Dawley rats (n = 21 bile duct ligated (BDL), n = 17 sham-operated controls) and fasted patients with liver cirrhosis (n = 11) and healthy volunteers (HVs, n = 10) underwent spoiled gradient-echo short-axis cardiac cine MRI studies at 9.4 T (rodents) and 3.0 T (humans). LD measurements were obtained from intrahepatic sub-cardiac regions-of-interest close to the diaphragmatic margin. One-week reproducibility and prandial stress induced hemodynamic changes were assessed in healthy volunteers. / Results: Normalized LD was higher in BDL (1.304 ± 0.062) compared with sham-operated rats (1.058 ± 0.045, P = 0.0031). HV seven-day reproducibility Bland–Altman (BA) limits-of-agreement (LoAs) were ± 0.028 a.u. and inter-reader variability BA LoAs were ± 0.030 a.u. Post-prandial LD increases were non-significant (+ 0.0083 ± 0.0076 a.u., P = 0.3028) and uncorrelated with PV flow changes (r = 0.42, p = 0.2219). LD measurements successfully obtained from all patients were not significantly higher in cirrhotics (0.102 ± 0.0099 a.u.) compared with HVs (0.080 ± 0.0063 a.u., P = 0.0847). / Conclusion: Cardiac-induced LD is a conceptually reasonable approach from preclinical studies, measurements demonstrate good reproducibility and inter-reader variability, are less likely to be affected by hepatic hemodynamic changes and are feasible in patients with cirrhosis

    Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI.

    Get PDF
    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement
    corecore