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Abstract: Most marketed peptide drugs are administered parenterally due to their inherent gas-
trointestinal (GI) instability and poor permeability across the GI epithelium. Several molecular
design techniques, such as cyclisation and D-amino acid (D-AA) substitution, have been proposed
to improve oral peptide drug bioavailability. However, very few of these techniques have been
translated to the clinic. In addition, little is known about how synthetic peptide design may improve
stability and permeability in the colon, a key site for the treatment of inflammatory bowel disease
and colorectal cancer. In this study, we investigated the impact of various cyclisation modifications
and D-AA substitutions on the enzymatic stability and colonic tissue permeability of native oxytocin
and 11 oxytocin-based peptides. Results showed that the disulfide bond cyclisation present in native
oxytocin provided an improved stability in a human colon model compared to a linear oxytocin
derivative. Chloroacetyl cyclisation increased native oxytocin stability in the colonic model at 1.5 h
by 30.0%, whereas thioether and N-terminal acetylated cyclisations offered no additional protection
at 1.5 h. The site and number of D-AA substitutions were found to be critical for stability, with
three D-AAs at Tyr, Ile and Leu, improving native oxytocin stability at 1.5 h in both linear and cyclic
structures by 58.2% and 79.1%, respectively. Substitution of three D-AAs into native cyclic oxytocin
significantly increased peptide permeability across rat colonic tissue; this may be because D-AA
substitution favourably altered the peptide’s secondary structure. This study is the first to show how
the strategic design of peptide therapeutics could enable their delivery to the colon via the oral route.

Keywords: oral delivery of biologics and peptides; colonic drug delivery; peptide design and
synthesis; gastrointestinal peptide stability; microbiota drug metabolism; bioavailability of biophar-
maceuticals

1. Introduction

Biopharmaceuticals, also known as biologics, offer an efficacious treatment of nu-
merous chronic and acute diseases due to their ability to selectively bind to pathological
targets [1]. However, they must often be delivered parenterally, leading to high treatment
costs, an increased systemic exposure, and patient dissatisfaction [2]. Delivery via the oral
route could improve many of the drawbacks associated with biologics, although decades
of investigation into oral biologic delivery has faced significant challenges [3,4]. The gas-
trointestinal (GI) tract encompasses a dynamic environment designed for the breakdown of
food and protection against microbial pathogens [5]. Gastric and intestinal fluids, host and
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microbial enzymes, and the epithelial mucous layer can all limit the oral bioavailability of
biologics [6,7].

A major challenge faced by peptide-based drugs is their predisposition to enzymatic
degradation in the GI tract, resulting in a short local GI and plasma half-lives as well as
a reduced therapeutic activity [8,9]. Protease, pancreatic enzymes, endopeptidases and
microbial enzymes may rapidly degrade peptides in the GI tract [10]. The endopeptidase
trypsin promotes peptide bond cleavage at arginine and lysine amino acids, whilst chy-
motrypsin causes bond hydrolysis at phenylalanine and tyrosine amino acids. Elastase
cleaves peptides bonds in regions high in isoleucine, leucine, valine and serine [10]. An-
other barrier to the oral delivery of biologics includes the epithelial mucous layer, which
lubricates the luminal contents and prevents the epithelial translocation of microorgan-
isms [11]. The viscous mucous often inhibits the permeation of peptides across intestinal
tissue and into the systemic circulation [12,13]. If peptides are successful in reaching the
epithelial surface, their absorption may still be limited via cleavage by epithelial peptidases,
their large molecular size, charge or hydrophilicity [14]. Here, the modification of biologics
to enhance passive absorption or active transport across the epithelium could be necessary
to facilitate systemic therapeutic activity [4,15–18].

Oral peptide development has gained increasing attention in the pharmaceutical
industry since the approval of oral desmopressin in 1978 [19,20]. This approval represented
a breakthrough in biologic delivery; however, the next oral peptide was not approved
until 1995 (Neoral®, Novartis, Basel, Switzerland). Neoral®, a cyclosporine formulation
indicated for rheumatoid arthritis, inflammatory bowel disease (IBD) and the prevention of
organ transplant rejection, utilises a self-emulsifying drug delivery system in the form of
soft gelatine capsules and oral solutions [21,22]. Cyclosporine contains lipophilic moieties,
a characteristic cyclic format and N-methylation, which all contribute to its structural
stability [23,24]. More recently, in 2019, Rybelsus® (Novo Nordisk, Bagsværd, Denmark)
(semaglutide) was approved for the treatment of type 2 diabetes mellitus. Semaglutide is a
glucagon-like peptide-1 analogue and is co-formulated in Rybelsus® with the absorption
enhancer sodium N-[8-(2-hydroxylbenzoyl) aminocaprylate] (SNAC) [25]. Another oral
biologic, Mycapssa® (Amryt Pharmaceuticals, Dublin, Ireland), which contains a cyclic
peptide, octreotide, co-formulated with sodium caprylate as a permeation enhancer, was
approved in 2020 for the long-term treatment of acromegaly [26]. These products employ a
combination of chemistry and formulation approaches, facilitating the peptides to maintain
their structural stability within the harsh GI environment and achieve absorption across
intestinal tissue [1,27–29].

Common formulation strategies published in the literature for improving biologic sta-
bility and intestinal absorption include nanoparticle or micelle formulation; common molec-
ular design techniques include cyclisation and D-amino acid (D-AA) substitution [30–33].
Cyclic peptides have been reported to exhibit longer half-lives and better GI stability com-
pared to their linear counterparts [34]. It is also known that the presence of D-AAs within
peptides confers greater proteolytic resistance compared to L-amino acids (L-AAs), which
are substrates of protease enzymes [35,36].

In this study, we investigated the impact of cyclisation chemistries and D-AA substitu-
tion on peptide stability and epithelial permeability in a colonic environment. The colon
represents a promising site for oral peptide delivery, due to its lower protease activity and
longer transit time compared to the upper GI tract, as well as being an attractive target for
the treatment of IBD, colorectal cancer and microbiome perturbations [37–41]. The colonic
delivery of gut-restricted peptides for local diseases could facilitate a safer and more effica-
cious treatment of local diseases, as peptides would be targeted to their site of action with
minimal systemic exposure. The treatment of systemic diseases may also be possible for
peptides with good colonic permeability; peptides may show better stability in the colon
compared to the small intestine due to a lower protease activity. The specific delivery of
therapeutics to the colon can be achieved by coating oral solid dosage forms with targeting
technologies that resist dissolution in the stomach and small intestine and undergo a pH-
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and enzymatic-triggered dissolution upon entering the colon [40,42]. Oxytocin was selected
as a model peptide as it has an inherently poor GI stability and can be easily chemically
modified, allowing several types of cyclisation and D-AA substitution methods to be tested.
Eleven oxytocin-based peptides were synthesised for comparison (Figure 1) [42,43]. The
peptides were categorised as linear or cyclic, and sub-categorised into two further groups:
+/- D-AAs. Peptide stability was assessed using human faecal slurry containing viable
microbiota and enzymes from three healthy volunteers. Permeability was evaluated using
freshly excised rat colonic tissue, due to the ease of accessibility compared to human tissue.
This work is the first to explore how different cyclisation methods and D-AA substitutions
could impact peptides’ colonic stability and absorption ex vivo. These chemical strategies
could provide valuable insight for the development of oral peptide therapeutics designed
to treat both colonic and systemic diseases.
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Figure 1. Schematic structures of oxytocin and 11 oxytocin-based peptides. Native oxytocin was
used for comparison with oxytocin peptide derivatives. P1 is a linear form of oxytocin, and the
P9, P10 and P11 variants are linear forms with varying D-AAs. P2, P3 and P6 are cyclic oxytocin
variants (N-acetylated, chloroacetyl and thioether, respectively), and P4, P5, P7, P8 are cyclic forms
with varying D-AAs. Amino acids are abbreviated as per: A (alanine); C (cysteine); G (glycine);
I (isoleucine); L (leucine); N (asparagine); P (proline); Q (glutamine); Y (tyrosine). The * marker
signifies the presence of a D-amino acid.

2. Materials and Methods
2.1. Materials

Chloroacetic acid, α,α′-dibromo-m-xylene, ammonia, activated charcoal, trifluoroacetic
acid (TFA), piperidine, acetic anhydride (Ac2O), 2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-
tetramethylaminiumhexafluorophosphate (HCTU) and diethyl ether (Et2O) were obtained
from ACROS Organics, UK. Triisopropylsilane (TIS) was obtained from Alfa Aesar, UK.
Acetonitrile (ACN) was obtained from Fisher Chemical, UK. Dichloromethane was obtained
from ThermoScientific, UK. N,N-Dimethylformamide (DMF) was obtained from Honeywell
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Riedel-de Haën, Germany. N,N-Diisopropylethylamine was obtained from Pepceuticals,
UK. Standard Fmoc-protected amino acids; Fmoc-Ala-OH, Fmoc-Asn(Trt)-OH, Fmoc-
Cys(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Gly-OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Pro-
OH and Fmoc-Tyr(tBu)-OH were obtained from Fluorochem, UK. Fmoc-protected D-amino
acids; Fmoc-D-Ile-OH, Fmoc-D-Leu-OH and Fmoc-D-Tyr(tBu)-OH were obtained from
Novabiochem. Rink amide MBHA resin was obtained from Gyros Protein Technolo-
gies, PurePep.

2.2. Peptide Synthesis

Peptides were synthesised as C-terminal amides on a Protein Prelude X Peptide
Synthesiser at 20-µmol scale (Gyros Protein Technologies, Uppsala, Sweden), using a
fivefold excess of Fmoc-amino acids (200 mM) relative to the Fmoc-Rink amide MBHA resin
(0.61 mmol/g). Deprotection was performed using 20% piperidine in DMF. Coupling was
performed using 1:1:2 amino acid/HCTU/DIEA in DMF. DMF top washes (0.5 min) were
performed between deprotection and coupling steps. Amino acids with D-configuration
were delivered by the Prelude’s single-shot feature, which presents a zero dead volume.

2.2.1. Cyclisation

The conventional disulfide bond cyclisation was performed in phosphate buffer
(10 mM, pH 7.8), the ratio of charcoal to peptide was adjusted to 1:1 (w/w) and the reaction
was stopped after 5 h. Peptides P2, P4, P7 and P8 were engineered to contain the disulfide
cyclic structure of native oxytocin.

Thioether cyclisation was used to incorporate a stapling reagent that reacts with two
cysteine residues and form a stable covalent linkage to provide a cyclic structure for the
P6 oxytocin variant. The proprietary CLIPSTM technology of the biotechnology company,
Pepscan, was used to introduce thiol-functional covalent bonds between the cysteines to
produce a cross-linking scaffold to induce conformational constraints [44]. The cyclisation
procedure was performed using α,α′-dibromo-m-xylene in a solution of ammonia in water
(pH 8.0) for 1 to 2 h.

Chloroacetyl cyclisation was employed to generate the P3 and P5 oxytocin peptide
variants as another type of stable cyclic structure. The N-terminal cysteine was substituted
for an alanine, a similar size amino acid, and chloroacetic acid was used as N-terminal
capping for the cyclisation strategy. After the deprotection of the cysteine side chain,
the spontaneous cyclisation reaction was completed in a few minutes with 20% DIEA in
DMF [45].

2.2.2. N-Terminal Acetylation

N-terminal acetylation incorporates an acetyl group at the N-terminus of a peptide [46],
producing modifications in protein folding, hydrophobicity and charge [47]. N-terminal
acetylation has been implicated in promoting peptide stability, through protecting the
NH2 terminal end against exopeptidase activity [48,49]. The P2 peptide was engineered to
contain an acetyl group, which may confer resistance to proteolysis.

2.2.3. Peptide Purification and Analysis

Peptide cleavage and deprotection were performed with 95:2.5:2.5 TFA/water/TIS for
2 to 3 h. The filtrates were precipitated from cold Et2O (50 mL), centrifuged at 5000 RPM
(2 × 5 min) and dried. The cleaved products were purified by reverse-phase chromatogra-
phy using a semi-preparative HPLC, and crude peptides were analysed using an LC/MS
1260 II Series™ HPLC system (Agilent Technologies, Cheadle, UK). Luna C18 Omega
Polar Column (150 × 4.6 mm) with parameters: gradient mobile phase 5–60% (ACN with
0.1% TFA), flow rate of 1 mL/min, and UV detection at 214 nm. Mass measurements were
carried out on a single quad detector.
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2.3. Peptide Stability in a Human Colon Model

The human colon model (HCM) was prepared to mimic in vivo colonic conditions and
maintain microbial viability [50,51]. Fresh human faecal material was provided voluntarily
from 3 healthy individuals who had not taken antibiotics for at least 6 months. Approval for
the collection and use of human faecal material was obtained from the National Research
Ethics Service (NRES) of Royal Free Hospital Biobank (reference number NC2017.010).
Faecal material from the 3 donors was pooled and then diluted within an anaerobic work-
station (37 ◦C, 70% relative humidity) (Elektrotek, Yorkshire, United Kingdom), using an
in-house basal growth media to prepare 12.5% or 25% faecal slurries [52]. These slurry
concentrations have been used to measure the colonic stability of several drugs and exceed
the minimum concentrations required for biorelevant bacterial activity [53]. The samples
were homogenised before being sieved (SefarNitex™, pore size 350 µm) to remove fibrous
material. Faecal slurry was frozen at −80 ◦C in aliquots and thawed immediately prior
to use.

Peptide stability studies were conducted within the anaerobic workstation (Elektrotek,
Yorkshire, United Kingdom). An amount of 2 mg/mL stock solutions of oxytocin and
oxytocin variants were prepared and added to HCM at a 1:1 ratio, leading to 1 mg/mL
incubation concentrations (n = 3 for each peptide). Incubation vials were placed on a
100 RPM shaker and 50 µL samples were withdrawn at specific time intervals (0, 0.5, 1
and 1.5 h) and immediately quenched with 50 µL methanol (1:1) to terminate protease
activity. Samples were centrifuged at 16,900 RCF for 10 min at 4 ◦C, and the supernatant
was collected for peptide quantification with a 1260 II Series™ HPLC system (Agilent
Technologies, Cheadle, UK). A Luna C18 (5 µm, 100 Å, 150 × 4.6 mm) HPLC column was
used with a 1.0 mL/min flow rate, an injection volume of 20 µL and mobile phases of
0.1% TFA in water and ACN, with varying gradients for optimised individual peptide
quantification to prevent overlap with endogenous components of the HCM.

2.4. Peptide Tissue Permeability

Peptide permeability studies were conducted using the NaviCyte Vertical Ussing
chamber model (Harvard Apparatus, Cambridge, UK) [54]. Amounts of 250–300 g adult
male Wistar rats (n = 3) were selected and sacrificed, in accordance with the accepted ethical
standards of the National Research Ethics Service (ethical approval number 21/WA/0388).
The rat colonic tissues were excised, processed to remove luminal contents and gently
washed with Krebs-Ringer Bicarbonate (KBR) buffer (pH 7.4). Each colonic tissue was
mounted on an Ussing chamber with the mucosal side facing the apical chamber. The tissue
was allowed to acclimatise in the KBR buffer for 20 min. Transepithelial electrical resistance
(TEER) across the tissue was measured using an EVOMTM voltameter (World Precision
Instruments, Inc., Hertfordshire, UK) and Ag/AgCl electrodes (Harvard Apparatus, Cam-
bridge, UK). TEER values were measured to ensure the tissue integrity was maintained
(≥200 Ω cm2). The native oxytocin and oxytocin variants at 1 mg/mL concentrations were
added to the apical chamber to measure peptide permeation into the tissue and into the
basal chamber. Each peptide was tested twice using tissue from the three rats to account
for any inter-animal variability. The Ussing chambers were continuously pumped with a
supply of carbogen (95% oxygen/5% carbon dioxide) and maintained at 37 ◦C. An amount
of 100 µL samples were taken from the basal side at 1 and 2 h timepoints. At 2 h, the
tissues were collected, quenched with 6.25 µL methanol/mg tissue, sectioned with scissors,
sonicated for 5 min and centrifuged for 10 min (4 ◦C, 16,900 RCF), with the supernatant
used for peptide quantification. The amount of peptide within the basal chamber and tissue
samples was measured with the HPLC method described in Section 3.3 and presented as
the percentage of the peptide dose originally applied to the apical chamber. The apparent
permeability (Papp) of peptides was calculated using Equation (1):

Papp =
dQ

dt ∗ A ∗ C0
(1)
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Equation (1): Apparent permeability (Papp) of peptides across the rat colonic tissue
was calculated using the peptide flux (µg/s, dQ/dt), the surface area of the tissue (cm2) and
the initial peptide concentration in the apical chamber (C0).

2.5. Data Analysis and Statistics

All results are presented as mean ± standard deviation and subjected to statistical
analysis using GraphPad Prism 9 (GraphPad by Dotmatics). Two-way ANOVA with Dun-
nett’s multiple comparison test was performed to determine statistical significance between
peptides and native oxytocin at multiple timepoints. Results were deemed significant
where p < 0.05. The physicochemical properties of peptides were estimated using RDKit
(version 2021.09.4) in Python (version 3.6.15) via Jupyter Notebook (version 6.3.0) using the
peptides’ isomeric SMILES. The Tanimoto similarities of the peptide variants’ molecular
structure to native oxytocin was calculated using chemical fingerprints (ECFP6, radius 3,
2048 bits) RDKit (version 2022.9.1) with Python (version 3.7.0) via Google Colaboratory.
Chemical similarity maps were generated using RDKit based on bit-vector fingerprints
(chirality = true, radius 3, 2048 bits) and Tanimoto similarity [55]. The degradation profiles
of peptides were fitted to an exponential decay model in GraphPad Prism 9. A nonlinear re-
gression (one-phase decay, also known as first-order decay) curve was fitted to the peptide
stability data with a plateau constraint of 0.0.

3. Results and Discussion
3.1. Synthesis of Oxytocin-Based Peptides

Table 1 presents the structures and measured molecular weights (MW) of oxytocin and
11 oxytocin-based peptides, alongside their Tanimoto similarities to native oxytocin. Seven
cyclic peptides were synthesised; of these, N-terminal acetyl (a known post-translational
modification of native oxytocin), chloroacetyl and thioether cyclic bonds were represented,
and four peptides also included D-AA substitutions [56]. Four linear peptides were pro-
duced, all based on the linear representation of native oxytocin, wherein the two cysteines
in oxytocin were replaced by alanines. Of these four linear derivatives, three contained
D-AAs, whereby 1, 2, and 3 D-AA insertions were synthesised to allow for the analysis
of increasing D-AA insertion on peptide stability and permeability. D-AA substitutions
took place at three possible amino acids, tyrosine, isoleucine and leucine, as these were
identified as the most protease-susceptible sites in native oxytocin [10,35,57,58]. Native
oxytocin (control) was utilised as a comparison against all oxytocin-based peptides.

As the synthesised peptides are oxytocin derivatives, their Tanimoto similarities reflect
their likeness to native oxytocin. Tanimoto similarity is a chemometric method for the
quantification of compounds’ similarity based on their chemical fingerprints [59]. P9, the
linear derivative with one D-AA, was the least similar to native oxytocin as demonstrated
by a Tanimoto similarity of 0.274. In terms of cyclisation, N-terminal acetylation was found
to preserve similarity the most (Tanimoto similarity: 0.836), whereas chloroacetyl cyclisation
resulted in the most chemical change (Tanimoto similarity: 0.777). Figure 2 presents the
Tanimoto similarity maps for the three non-native cyclisations and the linear derivatives.
Here, chemical regions highlighted in green show similarity to native oxytocin, and pink
regions show chemical differences [55]. In the variants with the native disulfide cyclisation,
substitution with one, two and three D-AAs led to cumulative similarity reductions of
0.148, 0.099 and 0.108 compared to native oxytocin, respectively. As such, both alterations
of cyclisation chemistry and D-AA substitution quantitatively reduce chemical similarity
to native oxytocin.
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Table 1. The properties of oxytocin and 11 synthesised oxytocin-based peptides. Amino acids are
abbreviated as per: A (alanine); C (cysteine); G (glycine); I (isoleucine); L (leucine); N (asparagine); P
(proline); Q (glutamine); Y (tyrosine).

Peptide Structure Amino Acid Sequence MW (g/mol)
Tanimoto

Similarity to
Native Oxytocin

Oxytocin
(Control) Cyclic (disulfide)
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nett’s multiple comparison test was performed to determine statistical significance be-

tween peptides and native oxytocin at multiple timepoints. Results were deemed signifi-

cant where p < 0.05. The physicochemical properties of peptides were estimated using 

RDKit (version 2021.09.4) in Python (version 3.6.15) via Jupyter Notebook (version 6.3.0) 

using the peptides’ isomeric SMILES. The Tanimoto similarities of the peptide variants’ 

molecular structure to native oxytocin was calculated using chemical fingerprints (ECFP6, 

radius 3, 2048 bits) RDKit (version 2022.9.1) with Python (version 3.7.0) via Google Cola-

boratory. Chemical similarity maps were generated using RDKit based on bit-vector fin-

gerprints (chirality = true, radius 3, 2048 bits) and Tanimoto similarity [55]. The degrada-

tion profiles of peptides were fitted to an exponential decay model in GraphPad Prism 9. 

A nonlinear regression (one-phase decay, also known as first-order decay) curve was fit-

ted to the peptide stability data with a plateau constraint of 0.0. 

3. Results and Discussion 

3.1. Synthesis of Oxytocin-Based Peptides 

Table 1 presents the structures and measured molecular weights (MW) of oxytocin 

and 11 oxytocin-based peptides, alongside their Tanimoto similarities to native oxytocin. 

Seven cyclic peptides were synthesised; of these, N-terminal acetyl (a known post-trans-

lational modification of native oxytocin), chloroacetyl and thioether cyclic bonds were rep-

resented, and four peptides also included D-AA substitutions [56]. Four linear peptides 

were produced, all based on the linear representation of native oxytocin, wherein the two 

cysteines in oxytocin were replaced by alanines. Of these four linear derivatives, three 

contained D-AAs, whereby 1, 2, and 3 D-AA insertions were synthesised to allow for the 

analysis of increasing D-AA insertion on peptide stability and permeability. D-AA substi-

tutions took place at three possible amino acids, tyrosine, isoleucine and leucine, as these 

were identified as the most protease-susceptible sites in native oxytocin [10,35,57–58]. Na-

tive oxytocin (control) was utilised as a comparison against all oxytocin-based peptides. 

Table 1. The properties of oxytocin and 11 synthesised oxytocin-based peptides. Amino acids are 

abbreviated as per: A (alanine); C (cysteine); G (glycine); I (isoleucine); L (leucine); N (asparagine); 

P (proline); Q (glutamine); Y (tyrosine). 

Peptide Structure Amino Acid Sequence 
MW 

(g/mol) 

Tanimoto 

Similarity to 

Native Oxy-

tocin 

Oxytocin  

(Control) 
Cyclic (disulfide) 

 
1007.2 1.000 

P1 Linear   946.1 0.331 

P2 
Cyclic (N-terminal 

acetylated)   
1050.2 0.836 

946.1 0.331

P2 Cyclic (N-terminal
acetylated)
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Peptide Structure Amino Acid Sequence 
MW 

(g/mol) 

Tanimoto 
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Native Oxy-
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Cyclic (N-terminal 

acetylated)   
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* D-Amino acid substitution. 

As the synthesised peptides are oxytocin derivatives, their Tanimoto similarities re-

flect their likeness to native oxytocin. Tanimoto similarity is a chemometric method for 

the quantification of compounds’ similarity based on their chemical fingerprints [59]. P9, 

the linear derivative with one D-AA, was the least similar to native oxytocin as demon-

strated by a Tanimoto similarity of 0.274. In terms of cyclisation, N-terminal acetylation 

1018.2 0.777

P4 Cyclic (disulfide)
with 3 D-AAs
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As the synthesised peptides are oxytocin derivatives, their Tanimoto similarities re-

flect their likeness to native oxytocin. Tanimoto similarity is a chemometric method for 

the quantification of compounds’ similarity based on their chemical fingerprints [59]. P9, 

the linear derivative with one D-AA, was the least similar to native oxytocin as demon-

strated by a Tanimoto similarity of 0.274. In terms of cyclisation, N-terminal acetylation 

1112.3 0.821

P7 Cyclic (disulfide)
with 1 D-AA
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with 2 D-AAs
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flect their likeness to native oxytocin. Tanimoto similarity is a chemometric method for 

the quantification of compounds’ similarity based on their chemical fingerprints [59]. P9, 

the linear derivative with one D-AA, was the least similar to native oxytocin as demon-

strated by a Tanimoto similarity of 0.274. In terms of cyclisation, N-terminal acetylation 

1008.2 0.753

P9 Linear with 1 D-AA
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flect their likeness to native oxytocin. Tanimoto similarity is a chemometric method for 

the quantification of compounds’ similarity based on their chemical fingerprints [59]. P9, 

the linear derivative with one D-AA, was the least similar to native oxytocin as demon-

strated by a Tanimoto similarity of 0.274. In terms of cyclisation, N-terminal acetylation 

946.1 0.274

P10 Linear with 2 D-AAs
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P11 Linear with 3 D-AAs
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As the synthesised peptides are oxytocin derivatives, their Tanimoto similarities re-

flect their likeness to native oxytocin. Tanimoto similarity is a chemometric method for 

the quantification of compounds’ similarity based on their chemical fingerprints [59]. P9, 
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strated by a Tanimoto similarity of 0.274. In terms of cyclisation, N-terminal acetylation 

946.1 0.286

* D-Amino acid substitution.
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Figure 2. Tanimoto similarity maps for peptide derivatives of native oxytocin. (A) The linear
derivative P1, (B) the N-terminal acetylated cyclisation P2, (C) the chloroacetyl cyclisation P3, (D) the
thioether cyclisation P6. Chemical regions highlighted in green are similar to native oxytocin; regions
highlighted in pink are dissimilar to native oxytocin; unhighlighted regions are neutral [55]. Similarity
maps were constructed based on bit-vector fingerprints (chirality = true, radius 3, nBits = 2048).

The effect of the chemical modifications on peptide affinity for oxytocin binding sites
would require further investigation if any of the derivatives were to be further developed.
The isoleucine at position 3 of the native oxytocin structure is a requirement for oxytocin
receptor binding; therefore, the effect of D-AA substitution is unknown. However, it has
been reported that ligands with a close structural similarity to oxytocin are very likely
to bind within the polar central pocket of the oxytocin receptor [60]. Further, it has been
hypothesised that oxytocin fragments liberated through metabolism may bind to different
receptors, thus activating distinct physiological responses [61]. Therefore, modifying the
colonic stability of oxytocin derivatives may lead to the preferential activation of certain
local and systemic receptors, leading to a targeted physiological modulation.

3.2. Insertion of Three D-Amino Acids to Oxytocin Confers Significant Stabilisation

Figure 3 shows the stability of a linear form of oxytocin (P1), an oxytocin derivative
with 3 D-AA substitutions (P4) and a linear derivative of oxytocin with 3 D-AAs (P11),
compared to native cyclic oxytocin in the HCM. The degradation rate constants and half-
lives of all peptides in the HCM are presented in Table S1. Overwhelmingly, P1 was the
least stable peptide with total degradation within the first 30 min of incubation. Cyclisation
incorporates structural constraints, which reduces access to protease binding and hydrol-
ysis [32,62,63]. The rigidity of the peptides is reflected in the number of rotatable bonds
in their structures, with P1 having far more flexibility (29 rotatable bonds) compared to
native oxytocin and P4 (17 rotatable bonds). Therefore, the linear P1 peptide was more
vulnerable to enzymatic attack than native oxytocin and P4 (p < 0.0001), which showed
47.3 ± 1.98% and 90.3 ± 1.57% higher stability at 30 min, respectively. The difference in
stability between native oxytocin and P4 revealed that the substitution of 3 D-AAs at the
tyrosine, isoleucine and leucine sites significantly improved biostability (p < 0.0001). After
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1.5 h of incubation, the P4 peptide had retained 85.1 ± 0.21% of its starting concentration,
compared to only 6.0 ± 1.36% for commercial oxytocin. The impact of D-AA substitution
was further investigated using the linear P11 peptide, comprising three D-AAs. Upon the
completion of the 1.5 h study, P11 had retained 64.2 ± 1.18% of its initial concentration. The
substitution of L-AAs for D-AAs in peptides can reduce affinity for metabolizing enzymes
by altering peptide stereochemistry [35]. Here, we have demonstrated the protective ef-
fects of D-AA substitution for oxytocin analogues during incubation in the HCM. These
results correspond to studies on other peptides, for example, the effect of D-AA substitu-
tion on the resistance of small peptide-based supramolecular hydrogels to proteinase [64];
and elsewhere, the resistance of antimicrobial peptides to intestinal, plasma and bacterial
proteases [58].
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3.3. Chloroacetyl Cyclisation Shows Superior Colonic Stabilisation over Native Oxytocin

Figure 4 shows the stability of oxytocin-based peptides with different cyclisation
chemistries in the HCM. Native oxytocin, with its disulfide cyclisation, was compared
to N-terminal acetylation cyclisation (P2), chloroacetyl cyclisation (P3), chloroacetyl cy-
clisation with 3 D-AA substitutions (P5) and thioether cyclisation (P6). The N-terminal
acetylation and thioether cyclisations resulted in significantly lower stabilities in the HCM
than native oxytocin from 0.5 to 1 h (p < 0.0001). After 1.5 h, P2 was degraded by the HCM
by 97.2± 0.84%, and P6 was 100% degraded in less than 1 h. In comparison, both P3 and P5
with their chloroacetyl cyclisations achieved significantly higher stabilities than oxytocin
over 1.5 h (p < 0.0001). After 1.5 h incubation, 34.4 ± 0.61% of P3 and 95.2 ± 3.14% of
P5 remained intact. These results show that the chloroacetyl ring successfully prevented
proteolytic cleavage to a greater extent than the other ring morphologies. The thioether
cyclisation present in P6 could have promoted enzymatic cleavage due to its larger size and
enhanced flexibility compared to the other cyclisation chemistries tested. The chloroacetyl-
cyclised peptides, P3 and P5, showed the highest stabilities, potentially as the chloroacetyl
moiety was added to the N-terminal amine of an alanine unit, thus protecting this suscepti-
ble site from enzymatic attack. Further research could examine whether the superiority of
chloroacetyl cyclisation for peptide stabilisation is specific to oxytocin-like peptides, or if it
is a molecular design technique that could be employed to improve the colonic stability of
diverse peptides. The almost total stability of P5 in the HCM demonstrates that cyclisation
and D-AA substitution resulted in an additive resistance to metabolism. Therefore, the
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inclusion of multiple stability-enhancing moieties in peptides intended for oral delivery
can be deemed as a beneficial molecular design strategy.
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3.4. Site of D-Amino Acid Substitution May Be more Important Than Number of Substitutions

To investigate whether the site and number of D-AA substitution influence stability,
we compared the stabilities of P7 (1 D-AA: D-Leu), P8 (2 D-AAs: D-Tyr, D-Ile) and P4
(3 D-AAs: D-Tyr, D-Ile, D-Leu) in the HCM (Figure 5). Somewhat unexpectedly, P8 was
less stable than P7 (p < 0.0001), despite P8 incorporating one D-AA more than P7. At 1.5 h,
22.3± 0.85% of P7 remained in the HCM compared to only 3.70± 0.43% of P8. This finding
suggests that the site of D-AA substitution may be more important for inferring proteolytic
stability than the number of D-AA substitutions. Both of P8′s D-AAs were located within
its disulfide ring, whereas P7 contained its D-Leu at position 9 of its linear portion following
the disulfide ring. Therefore, it can be conferred that the leucine in the linear portion of
the amino acid chain was more susceptible to cleavage than the amino acids within the
ring, potentially as the ring sterically hinders the binding of metabolising enzymes. That
said, the increased stability of P4 compared to P7 validates that the disulphide ring was
still susceptible to proteolytic cleavage; substituting D-AAs at the tyrosine and isoleucine
sites within the ring as well as the leucine in the linear peptide portion resulted in P4′s
high stability (85.3 ± 0.90%) after 1.5 h. Both P4 and P7 were significantly more stable
than native oxytocin at all timepoints from 0.5 to 1.5 h (p < 0.0001). In comparison, P8 was
significantly less stable than native oxytocin from 0.5 to 1.5 h (p < 0.05).

3.5. Number of D-Amino Acid Substitutions in Linear Analogues Positively Correlates with
Colonic Stability

The impact of the number of D-AA substitutions on a linear form of oxytocin was
assessed in the HCM (Figure 6). Both P1 (no D-AAs) and P9 (one D-Leu) were rapidly
degraded in less than 30 min. This demonstrates that the presence of a single D-AA in
the linear form of oxytocin was not sufficient to stabilise the peptide. Linear peptides are
inherently more unstable than cyclic analogues, and even the substitution of two D-AAs in
P10 did not improve upon the stability of native oxytocin. However, a positive correlation
between the number of D-AAs and stability in the HCM was observed, as P10 was more
stable than P1 and P9, whilst P11 with three D-AAs was the most stable linear derivative of
oxytocin. After 1.5 h of incubation, 64.2 ± 1.18% of P11 remained intact compared to only
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6.5 ± 0.0% of native oxytocin, a significant difference (p < 0.0001). This proves that D-AA
substitution is a viable strategy for increasing peptide stability in the colonic environment
and can significantly improve upon native peptide stability even when used without other
stabilisation techniques, such as cyclisation.
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less stable than oxytocin (p = 0.0053) and P11 was significantly more stable (p < 0.0001). N = 3 for
each peptide.

3.6. Number of D-Amino Acid Insertions Positively Correlates with Colonic Tissue Permeability

Following investigation in the HCM, three of the most stable peptides, P4, P7 and P11,
were selected for the analysis of their permeability across rat colonic tissue. The Papp of
the peptides at 1 and 2 h is presented in Table S2. Native oxytocin was not detected in
tissue or in the basolateral chamber at 1 or 2 h, indicating that it did not permeate colonic
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tissue at all (Papp = 0.00 cm/s). Only P4 (disulfide cyclisation and three D-AAs) had a
significantly higher tissue permeability than native oxytocin (Figure 7). At 2 h, 3.0 ± 0.85%
of the original dose of P4 was detected within the colonic tissue and 6.85 ± 2.05% was
detected in the basolateral chamber, indicating permeation. The Papp of P4 at 1 h was
5.70 × 10−5 cm/s and at 2 h was 2.06 × 10−4 cm/s, signifying good permeability. In
comparison, P7 (disulfide cyclisation and one D-AA) and P11 (linear with three D-AAs)
did not have a significantly higher permeation than native oxytocin (Papp at 2 h: 0.00 and
3.52 × 10−5 cm/s, respectively). These results demonstrate that the substitution of three
D-AAs in combination with the disulfide cyclisation of native oxytocin was necessary to
increase epithelial permeability. As such, this combined approach could be a promising
technique for the colonic delivery of peptides intended for local and systemic action. This
modification could be beneficial for increasing the colonic permeability of other peptides
indicated for IBD or colorectal cancer [65]. Cyclisation can facilitate peptides to adopt
open and closed molecular conformations, based on intramolecular hydrogen bonding,
that facilitate movement across the cell membrane [66]. It is thought that bioavailable
cyclic peptides first anchor to the membrane in their open or closed conformation; they
then orient within the membrane, and subsequently adopt their closed conformation to
passively diffuse across the lipid bilayer [67]. As D-AA substitution here was necessary
to significantly increase tissue permeability, it may be that the altered secondary structure
attained by D-AA substitution aided the anchoring, orientation and/or passive diffusion
of the cyclic peptide across the membrane [68,69]. As the tissue permeability and retention
of P4 is still relatively low, formulation with permeation enhancers could be considered if
P4, or similar peptides, were to be further optimised for colonic permeability [70,71].
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p < 0.0001. N = 2 for each peptide.

This paper has revealed several molecular modifications that can improve the stability
and permeability of oxytocin in a simulated colonic environment. As with most studies,
there are limitations to our methods, namely the comparability of the HCM and perme-
ability model to in vivo human physiology. Firstly, human faecal samples were used to
simulate the enzymatic activity of the colon. Faeces are easily obtainable and contain the
majority of microbial species found in the colon [72]. Moreover, for colonic drug delivery,
the stability of small-molecule drugs in the presence of faecal slurry has been shown to cor-
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relate well with in vivo bioavailability [73,74]; yet, the correlation between peptide stability
in faecal slurry and in vivo bioavailability has not yet been proven. As such, aspirates of
human colonic fluid could provide a more accurate in vitro model, although these can be
difficult to obtain. A second limitation of this study was the use of rat colonic tissue in an
Ussing chamber to model colonic peptide permeability. The Ussing chamber is an accepted
technique for predicting intestinal permeability in preclinical drug development [53]. How-
ever, human intestinal tissue (rather than rat) would likely provide a closer approximation
of in vivo peptide permeability due to the presence of relevant transporters, enzymes and
other anatomical elements [75]. As with colonic fluid, human colonic tissue is difficult to
source and may be associated with a particular disease state. Hence, animal tissue provided
a close alternative in this study.

A valuable next step for this work would be to investigate the effects of cyclisation and
D-AA substitution on a wider range of therapeutic peptides’ stabilities and permeabilities.
This would validate whether the modifications can be applied to structurally diverse
peptides to improve their bioavailability following colonic delivery. In addition, the effects
of cyclisation and D-AA substitution on peptide potency could be examined in more
detail. The potency of associated metabolites could also be investigated. Effects on target
binding would likely be peptide-specific; thus, binding studies could be completed for the
peptides with substantial potential for colonic delivery. Key indications could include IBD,
colorectal cancer and microbiome dysbiosis [37–40]. As most peptide drugs are currently
administered parenterally, there is significant opportunity for the development of oral
peptide formulations. Clinical advantages of delivering peptide drugs to the colon via
the oral route include simple and non-invasive administration, good patient compliance
and the direct access to local colonic targets. Following the successful in vitro analysis
of peptide stability, permeability and binding affinity, candidates could be progressed to
assessment in in vivo models [65].

4. Conclusions

In this study, the impact of various cyclisation chemistries and D-AA substitutions
on the colonic stability and colonic tissue permeability of oxytocin and 11 oxytocin-based
peptides was investigated. Compared to native oxytocin with its disulfide ring, the in-
corporation of a chloroacetyl ring significantly increased peptide stability in the HCM.
Comparatively, N-terminal acetylation and thioether cyclisation decreased stability. The
substitution of three D-AAs into the chloroacetyl analogue resulted in over 95% stability
after 1.5 h incubation, and three D-AAs in the disulfide variant achieved over 85% stability.
Linear forms of oxytocin were inherently less stable in the colonic environment compared
to cyclic versions due to their heightened vulnerability to enzymatic cleavage. However,
the addition of D-AAs to the linear forms improved stability with three D-AA substitutions,
achieving a significantly higher stability than native oxytocin. P4, the cyclic analogue
containing three D-AAs, was observed to permeate rat colonic tissue to a greater extent
than oxytocin, a linear analogue with three D-AAs, and a cyclic analogue with one D-AA.
Here, we have demonstrated that a combination of cyclisation and D-AA substitution
chemistries enhanced peptide stability and tissue permeability. These findings promote the
use of multiple techniques for improving the oral bioavailability of therapeutic peptides,
including peptides intended for colonic delivery. Future work should validate the effective-
ness of these strategies for diverse peptide structures in vivo, facilitating the move towards
oral peptide drugs for an improved treatment of colonic and systemic disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15071956/s1, Table S1: The degradation rate con-
stants and half-lives of peptides in the human colon model; Table S2: The apparent permeabilities of
the peptides tested in the Ussing chamber model, using rat colonic tissue.
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