400 research outputs found

    Climate variability of Southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)

    Get PDF
    A key region to study high resolution climate changes of the Southern Hemisphere is undoubtedly the southern part of Chile because it has the advantage to be far removed from the Northern Hemisphere ice sheets and thermohaline circulation influences. In order to reconstruct the regional climate evolution since the Last Glacial Maximum, we investigated the sedimentary infilling of Lago Puyehue (40°S, 164 km2, elevation 185 m) by a multi-proxy analyse of a 11 m long core. Sediments from this core are transported by interflow currents and are made of finely laminated silts, with only small disturbances due to volcanic and seismic activities. Several proxies were measured: grain-size, mineralogy, magnetic susceptibility, major elements geochemistry and biogenic silica concentration. These are used to reconstruct paleo-precipitation and paleo-productivity changes around 40°S. Results evidence that sediment grainsize is highly correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is highly correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition demonstrate that, since the Last Glacial Maximum, the Chilean Lake District was characterized by 3 abrupt climate changes superimposed on a long term climate evolution. These rapid climate changes are: (1) the end of the Last Glacial Maximum at 17,300 cal. yr. BP; (2) a 13,100-12,300 cal. yr. BP cold event, ending rapidly and interpreted as the local counter part of the European Younger Dryas event, and (3) a 3400-2900 cal. yr. BP climatic instability related to low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this Southern Hemisphere climate change lags behind the Northern Hemisphere Younger Dryas cold period by 500 to 1000 years

    Paleoproductivity of Puyehue Lake (Southern Chile) during the last millenium: climatic significance

    Get PDF
    Southern Chile is a key site for the understanding of past climatic variations since it is influenced by the El Nino Southern Oscillation (ENSO). We investigated high resolution climate changes during the last millennium by a multi-proxy analyse of short cores (60 cm long) collected in Puyehue lake (40°S): magnetic susceptibility, grain-size, mineralogy, density, gamma-density, LOI, biogenic silica content and bulk XRF geochemistry. According to age-depth model (210Pb, 137Cs and varve counting - Boës et al., this session), the cores cover the last 600 yr. The sediment is characterized by volcanic minerals and a high diatom content, due to the important lacustrine silica supply characteristic of volcanic environments. Moreover, the active volcanism of the Chilean Lake District is responsible of a high number of tephra deposits. Our main aim is to quantify biogenic particles fluxes throughout the last millennium by Na2CO3 dissolution and by normative calculation based on bulk XRF analyses. The result shows that volcanic eruptions do not influence the biogenic productivity of the lake. From 1400 to 1880 yr. AD, paleoproductivity shows a global trend from low to high biogenic production. Important paleoproductivity changes are observed over the last 120 yr. Results are compared with historical data and discussed in terms of climate changes and/or anthropic influence

    Bose-Einstein source of intermittency in hadronic interactions

    Full text link
    The multi-particle Bose-Einstein correlations are the source of ''intermittency'' in high energy hadronic collisions. The power-law like increase of factorial moments with decreasing bin size was obtained by complete event weighing technique with gaussian approximation of space-time particle emitting source shape. The value of source size parameter was found to be higher than the common one fitted with the help of the standard Handbury Brown-Twiss procedure.Comment: 12

    Generic and Layered Framework Components for the Control of a Large Scale Data Acquisition System

    Get PDF
    The complexity of today's experiments in High Energy Physics results in a large amount of readout channels which can count up to a million and above. The experiments in general consist of various subsystems which themselves comprise a large amount of detectors requiring sophisticated DAQ and readout electronics. We report here on the structured software layers to control such a data acquisition system for the case of LHCb which is one of the four experiments for LHC. Additional focus is given on the protocols in use as well as the required hardware. An abstraction layer was implemented to allow access on the different and distinct hardware types in a coherent and generic manner. The hierarchical structure which allows propagating commands down to the subsystems is explained. Via finite state machines an expert system with auto-recovery abilities can be modeled

    Expression of a Dominant Negative CELF Protein In Vivo Leads to Altered Muscle Organization, Fiber Size, and Subtype

    Get PDF
    CUG-BP and ETR-3-like factor (CELF) proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ) effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ) were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle.Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected.Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis

    Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome

    Get PDF
    Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS), also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%), conotruncal defects of the heart (CHD; 70-80%), hypocalcemia (20-60%), and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS

    EMBO Mol Med

    Get PDF
    Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology

    Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph

    Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant

    Get PDF
    Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys. J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
    corecore