83,087 research outputs found

    Genus Topology of the Cosmic Microwave Background from the WMAP 3-Year Data

    Full text link
    We have independently measured the genus topology of the temperature fluctuations in the cosmic microwave background seen in the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data indicates consistency with Gaussian random-phase initial conditions, as predicted by standard inflation. We set 95% confidence limits on non-linearities of -101 < f_{nl} < 107. We also find that the observed low l (l <= 8) modes show a slight anti-correlation with the Galactic foreground, but not exceeding 95% confidence, and that the topology defined by these modes is consistent with that of a Gaussian random-phase distribution (within 95% confidence).Comment: MNRAS LaTeX style (mn2e.cls), EPS and JPEG figure

    Rich variety of defects in ZnO via an attractive interaction between O-vacancies and Zn-interstitials

    Full text link
    As the concentration of intrinsic defects becomes sufficiently high in O-deficient ZnO, interactions between defects lead to a significant reduction in their formation energies. We show that the formation of both O-vacancies and Zn-interstitials becomes significantly enhanced by a strong attractive interaction between them, making these defects an important source of n-type conductivity in ZnO.Comment: 12 pages, 4 figure

    Preliminary assessment of the microwave landing system requirements for STOL operations

    Get PDF
    The results of an investigation made to assess the Microwave Landing System (MLS) Requirements for use by civil STOL aircraft are described. The principal MLS characteristics investigated in the report were signal accuracy and volume of coverage. The study utilized a nonlinear six-degree-of-freedom digital simulation of a De Havilland Buffalo C-8A aircraft. Fully automatic control of timed curve flight down to touchdown was simulated. Selected MLS accuracy and coverage parameters for the azimuth, primary elevation, flare evelation and DME signals were varied. The resulting STOL aircraft system performance in following a representative curved flight path was statistically determined. Coverage requirements for STOL aircraft operating in the terminal area environment were also investigated

    Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory

    Get PDF
    Regularization and renormalization is discussed in the context of low-energy effective field theory treatments of two or more heavy particles (such as nucleons). It is desirable to regulate the contact interactions from the outset by treating them as having a finite range. The low energy physical observables should be insensitive to this range provided that the range is of a similar or greater scale than that of the interaction. Alternative schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in the sense that the SS matrix is unity and the renormalized coupling constant zero. Possible consequences of low energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region of validity of effective field theory expansion is much larger if the contact interactions are given a finite range from the beginning.Comment: 7 page
    • …
    corecore