3,760 research outputs found

    Electric field measurements across the harang discontinuity

    Get PDF
    The Harang discontinuity, the area separating the positive and negative bay regions in the midnight sector of the auroral zone, is a focal point for changes in behavior of many phenomena. Through this region the electric field rotates through the west from a basically northward field in the positive bay region to a basically southward field in the negative bay region, appearing as a reversal in a single axis measurement; 32 of these reversals have been identified in the OGO-6 data from November and December, 1969. The discontinuity is dynamic in nature, moving southward and steepening its latitudinal profile as magnetic activity is increased. As activity decreases it relaxes poleward and spreads out in latitudinal width. It occurs over several hours of magnetic local time. The boundary in the electric field data is consistent with the reversal of ground magnetic disturbances from a positive to negative bay condition. The discontinuity is present in the electric field data both during substorms and during quiet times and appears to define a pattern on which other effects can occur

    Electric fields in the ionosphere and magnetosphere

    Get PDF
    Electric field measuring techniques used in ionospheric and magnetospheric electrojet current studie

    Isolated cold plasma regions: Observations and their relation to possible production mechanisms

    Get PDF
    Regions of enhanced cold plasma, isolated from the main plasmasphere along the Explorer 45 orbit on the equatorial plane, are reported using the sheath induced potentials seen by the electric field experiment. The occurrence of these regions has a strong correlation with negative enhancements of Dst, and their locations are primarily in the noon-dusk quadrant. The data support the concept that changes in large scale convection play a dominant role in the formation of these regions. Plasmatails that are predicted from enhancements of large scale convection electric fields in general define where these regions may be found. More localized processes are necessary to account for the exact configuration and structure seen in these regions and may eventually result in detachment from the main plasmasphere

    The plasmapause revisited

    Get PDF
    Saturation of the dc double probe instrument on Explorer 45 was used to identify the plasmapause. A data base was developed to statistically study the average position of the plasmapause over 14.5 hours of magnetic local time under differing magnetic conditions. The afternoon-evening bulge in the L coordinate of the plasmapause versus local time was found centered between 20 and 21 hours MLT during magnetically quiet periods and shifted toward dusk as activity increased, but always post dusk. During quiet periods a bulge in the L coordinate near noon was also seen, which disappeared as activity increased. The average local time distribution plasmapause position during high magnetic activity was irregular in the afternoon region where large scale convection models predict the creation of plasmatails or detached plasma regions from increases in the solar wind induced convection. The results suggest that solar wind induced convection is partially shielded from the dayside. As the intensity of the convection is increased, it more effectively penetrates the dayside, which shifts the post dusk bulge nearer to dusk and eliminates the quiet-time bulge near noon

    Preliminary results of measurements of sq currents and the equatorial electrojet near peru

    Get PDF
    Measurement of electric current, magnetic field, and electron density in ionosphere using Nike-Apache sounding rocket

    Measurements of Ionospheric Currents

    Get PDF
    Sounding rocket measurements of ionospheric current

    Variational electric fields at low latitudes and their relation to spread F and plasma irregularities

    Get PDF
    Recordings from OGO 6 show that electric field irregularities are frequently present between + or - 35 deg geomagnetic latitude in the 2000 - 0600 local time sector. The signatures are very clear, and are easily distinguished from the normal AC background noise, and whistler and emission activity. The spectral appearance of the fields makes it meaningful to distinguish between 3 different types of irregularities: strong irregularities, weak irregularities, and weak irregularities with a rising spectrum. Strong irregularities seem most likely to occur in regions where gradients in ionization are present. Changes in plasma composition, resulting in an increase in the mean ion mass, are also often observed in the irregularity regions. Comparison with ground based ionosondes indicates a connection between strong irregularities and low latitude spread F. A good correlation is also present between strong fields and small scale fluctuations in ionization, delta N/N 1 percent. From the data it appears as if a gradient driven instability is the most likely source of the strong irregularities

    Ionospheric and magnetospheric plasmapauses'

    Get PDF
    During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause

    Midlatitude Pi2 pulsations: AFGL and ISEE magnetometer observations correlated

    Get PDF
    The ISEE observations of the pi2 magnetic pulsations occuring substorm onset in the inner magnetosphere are discussed. One of these events which was also detected as a pi2 event by the AFGL midlatitude magnetometers is considered. The event occurred when the foot of the ISEE field line was over North America. The ground and satellite signals are remarkably similar: they start and stop at the same time, have the same period and can be correlated cycle by cycle. The waves are detected in the electric field data from ISEE 1 and in the magnetic field data from both ISEE 1 and ISEE 2. Calculation of the Poynting vector at ISEE 1 shows that the energy flowed mainly westward, but that there was also a component towards the nearer (southern) ionospheric foot of the field line. The phases between the various field components measured by ISEE 1 and 2 indicate that this is a standing hydromagnetic oscillation

    Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    Get PDF
    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research
    corecore