27 research outputs found

    Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog

    Get PDF
    The domestic dog (Canis familiaris) is a promising animal model. Yet, the canine neuroscience literature is predominantly comprised of studies wherein (semi-)invasive methods and intensive training are used to study awake dog behavior. Given prior findings with humans and/or dogs, our goal was to assess, in 16 family dogs (1.5–7 years old; 10 males; 10 different breeds) the effects of pre-sleep activity and timing and location of sleep on sleep electrophysiology. All three factors had a main and/or interactive effect on sleep macrostructure. Following an active day, dogs slept more, were more likely to have an earlier drowsiness and NREM, and spent less time in drowsiness and more time in NREM and REM. Activity also had location- and time of day-specific effects. Time of day had main effects; at nighttime, dogs slept more and spent less time in drowsiness and awake after first drowsiness, and more time in NREM and in REM. Location had a main effect; when not at home, REM sleep following a first NREM was less likely. Findings are consistent with and extend prior human and dog data and have implications for the dog as an animal model and for informing future comparative research on sleep

    The domain-variant indirect association between electrophysiological response to reward and ADHD presentations is moderated by dopaminergic polymorphisms

    No full text
    Background: Understanding the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD) may necessitate decomposition of the heterogeneous clinical phenotype into more homogeneous intermediate phenotypes. Reinforcement sensitivity is a promising candidate, but the exact nature of the ADHD-reward relation – including how, for whom, and to which ADHD dimensions atypicalities in reward processing are relevant – is equivocal. Methods: Aims were to examine, in a carefully phenotyped sample of adolescents (N = 305; Mage = 15.30 years, SD = 1.07; 39.7% girls), whether functional dopaminergic polymorphisms implicated in both reward processing and ADHD (1) are differentially associated with event-related potentials (ERPs) of reward anticipation at distinct levels of ADHD risk (nno risk = 174, nat-risk = 131, ndiagnosed = 83); and (2) moderate the indirect effect of dispositional affectivity on the association between ERPs and ADHD domains. Results: In adolescents at-risk for or with ADHD, carrying a hypodopaminergic allele was associated with enhanced ERPs of attention allocation to cue and attenuated ERPs of anticipatory attention to feedback. No associations were observed in adolescents not at-risk for or without ADHD. Controlling for age and sex, both the negative indirect effect of positive affectivity (PA) on the association between ERPs and inattention and the positive indirect effect of PA on the association between ERPs and hyperactivity/impulsivity were supported only for those with high activity dopamine transporter (DAT) alleles. Conclusions: Reward and affective processing are promising intermediate phenotypes relevant to disentangling ADHD developmental pathways. Consistent with developmental multifinality, through the successive effects of reward anticipation and positive affectivity, functional dopaminergic variants may confer protection against inattention or risk for hyperactivity/impulsivity
    corecore