3,009 research outputs found
Symmetry properties of Penrose type tilings
The Penrose tiling is directly related to the atomic structure of certain
decagonal quasicrystals and, despite its aperiodicity, is highly symmetric. It
is known that the numbers 1, , , , ..., where
, are scaling factors of the Penrose tiling. We show that
the set of scaling factors is much larger, and for most of them the number of
the corresponding inflation centers is infinite.Comment: Paper submitted to Phil. Mag. (for Proceedings of Quasicrystals: The
Silver Jubilee, Tel Aviv, 14-19 October, 2007
When is a Network a Network? Multi-Order Graphical Model Selection in Pathways and Temporal Networks
We introduce a framework for the modeling of sequential data capturing
pathways of varying lengths observed in a network. Such data are important,
e.g., when studying click streams in information networks, travel patterns in
transportation systems, information cascades in social networks, biological
pathways or time-stamped social interactions. While it is common to apply graph
analytics and network analysis to such data, recent works have shown that
temporal correlations can invalidate the results of such methods. This raises a
fundamental question: when is a network abstraction of sequential data
justified? Addressing this open question, we propose a framework which combines
Markov chains of multiple, higher orders into a multi-layer graphical model
that captures temporal correlations in pathways at multiple length scales
simultaneously. We develop a model selection technique to infer the optimal
number of layers of such a model and show that it outperforms previously used
Markov order detection techniques. An application to eight real-world data sets
on pathways and temporal networks shows that it allows to infer graphical
models which capture both topological and temporal characteristics of such
data. Our work highlights fallacies of network abstractions and provides a
principled answer to the open question when they are justified. Generalizing
network representations to multi-order graphical models, it opens perspectives
for new data mining and knowledge discovery algorithms.Comment: 10 pages, 4 figures, 1 table, companion python package pathpy
available on gitHu
Uniform asymptotics of the coefficients of unitary moment polynomials
Keating and Snaith showed that the absolute moment of the
characteristic polynomial of a random unitary matrix evaluated on the unit
circle is given by a polynomial of degree . In this article, uniform
asymptotics for the coefficients of that polynomial are derived, and a maximal
coefficient is located. Some of the asymptotics are given in explicit form.
Numerical data to support these calculations are presented. Some apparent
connections between random matrix theory and the Riemann zeta function are
discussed.Comment: 31 pages, 1 figure, 2 tables. A few minor misprints fixe
Quantum dynamics in high codimension tilings: from quasiperiodicity to disorder
We analyze the spreading of wavepackets in two-dimensional quasiperiodic and
random tilings as a function of their codimension, i.e. of their topological
complexity. In the quasiperiodic case, we show that the diffusion exponent that
characterizes the propagation decreases when the codimension increases and goes
to 1/2 in the high codimension limit. By constrast, the exponent for the random
tilings is independent of their codimension and also equals 1/2. This shows
that, in high codimension, the quasiperiodicity is irrelevant and that the
topological disorder leads in every case, to a diffusive regime, at least in
the time scale investigated here.Comment: 4 pages, 5 EPS figure
Entropy of complex relevant components of Boolean networks
Boolean network models of strongly connected modules are capable of capturing
the high regulatory complexity of many biological gene regulatory circuits. We
study numerically the previously introduced basin entropy, a parameter for the
dynamical uncertainty or information storage capacity of a network as well as
the average transient time in random relevant components as a function of their
connectivity. We also demonstrate that basin entropy can be estimated from
time-series data and is therefore also applicable to non-deterministic networks
models.Comment: 8 pages, 6 figure
Random matrices with external source and KP functions
In this paper we prove that the partition function in the random matrix model
with external source is a KP function.Comment: 12 pages, title change
The Ammann-Beenker tilings revisited
This paper introduces two tiles whose tilings form a one-parameter family of
tilings which can all be seen as digitization of two-dimensional planes in the
four-dimensional Euclidean space. This family contains the Ammann-Beenker
tilings as the solution of a simple optimization problem.Comment: 7 pages, 4 figure
What is a crystal?
Almost 25 years have passed since Shechtman discovered quasicrystals, and 15
years since the Commission on Aperiodic Crystals of the International Union of
Crystallography put forth a provisional definition of the term crystal to mean
``any solid having an essentially discrete diffraction diagram.'' Have we
learned enough about crystallinity in the last 25 years, or do we need more
time to explore additional physical systems? There is much confusion and
contradiction in the literature in using the term crystal. Are we ready now to
propose a permanent definition for crystal to be used by all? I argue that time
has come to put a sense of order in all the confusion.Comment: Submitted to Zeitschrift fuer Kristallographi
Analytical probabilistic approach to the ground state of lattice quantum systems: exact results in terms of a cumulant expansion
We present a large deviation analysis of a recently proposed probabilistic
approach to the study of the ground-state properties of lattice quantum
systems. The ground-state energy, as well as the correlation functions in the
ground state, are exactly determined as a series expansion in the cumulants of
the multiplicities of the potential and hopping energies assumed by the system
during its long-time evolution. Once these cumulants are known, even at a
finite order, our approach provides the ground state analytically as a function
of the Hamiltonian parameters. A scenario of possible applications of this
analyticity property is discussed.Comment: 26 pages, 5 figure
- âŠ