1,536 research outputs found

    Modularity revisited: A novel dynamics-based concept for decomposing complex networks

    Get PDF
    Finding modules (or clusters) in large, complex networks is a challenging task, in particular if one is not interested in a full decomposition of the whole network into modules. We consider modular networks that also contain nodes that do not belong to one of modules but to several or to none at all. A new method for analyzing such networks is presented. It is based on spectral analysis of random walks on modular networks. In contrast to other spectral clustering approaches, we use different transition rules of the random walk. This leads to much more prominent gaps in the spectrum of the adapted random walk and allows for easy identification of the network's modular structure, and also identifying the nodes belonging to these modules. We also give a characterization of that set of nodes that do not belong to any module, which we call transition region. Finally, by analyzing the transition region, we describe an algorithm that identifies so called hub-nodes inside the transition region that are important connections between modules or between a module and the rest of the network. The resulting algorithms scale linearly with network size (if the network connectivity is sparse) and thus can also be applied to very large networks

    Detection of absolute rotation using superfluid ^4He

    Get PDF
    We have developed the superfluid analog of the superconducting rf SQUID. Such a device is a quantum mechanically based, absolute gyroscope and has been used to sense the rotation of the Earth. Our device is fabricated using silicon processing techniques and forms a planer sensing loop of superfluid helium which couples to the applied rotation. A much more sensitive superfluid gyroscope based on the principle’s demonstrated with this device, might ultimately be used to detect the precession of our local inertial frame with respect to the fixed stars by the gravitomagnetic field of the rotating Earth. We compare the superfluid gyroscope against two other experiments aimed at detecting this general relativistic effect

    Finding and counting vertex-colored subtrees

    Full text link
    The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors MM. It is a graph pattern-matching problem variant, where the structure of the occurrence of the pattern is not of interest but the only requirement is the connectedness. Using an algebraic framework recently introduced by Koutis et al., we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, proving that the counting problem is FPT if M is a set, but becomes W[1]-hard if M is a multiset with two colors. Finally, we present an experimental evaluation of this approach on real datasets, showing that its performance compares favorably with existing software.Comment: Conference version in International Symposium on Mathematical Foundations of Computer Science (MFCS), Brno : Czech Republic (2010) Journal Version in Algorithmic

    Continuous infusion of physostigmine in patients with perioperative septic shock: A pharmacokinetic/pharmacodynamic study with population pharmacokinetic modeling

    Get PDF
    Background In the context of the cholinergic anti-inflammatory pathway, the clinical trial Anticholium® per Se (EudraCT Number: 2012-001650-26, ClinicalTrials.gov NCT03013322) addressed the possibility of taking adjunctive physostigmine salicylate treatment in septic shock from bench to bedside. Pharmacokinetics (PK) are likely altered in critically ill patients; data on physostigmine PK and target concentrations are sparse, particularly for continuous infusion. Our objective was to build a population PK (popPK) model for physostigmine, and further evaluate pharmacodynamics (PD) and concentration-response relationship in this setting. Methods In the randomized, double-blind, placebo-controlled trial, 20 patients with perioperative septic shock either received an initial dose of 0.04 mg/kg physostigmine salicylate, followed by continuous infusion of 1 mg/h for up to 120 h, or equivalent volumes of 0.9% sodium chloride (placebo group). Physostigmine plasma concentrations and acetylcholinesterase (AChE) activity were measured; concentration-response associations were evaluated, and popPK and PD modeling was performed with NONMEM. Results Steady state physostigmine plasma concentrations reached 7.60 ± 2.81 ng/mL (mean ± standard deviation [SD]). PK was best described by a two-compartment model with linear clearance. Significant covariate effects were detected for body weight and age on clearance, as well as a high inter-individual variability of the central volume of distribution. AChE activity was significantly reduced to 30.5%–50.6% of baseline activity during physostigmine salicylate infusion. A sigmoidal direct effect PD model best described enzyme inhibition by physostigmine, with an estimated half maximal effective concentration (EC50) of 5.99 ng/mL. Conclusions PK of physostigmine in patients with septic shock displayed substantial inter-individual variability with body weight and age influencing the clearance. Physostigmine inhibited AChE activity with a sigmoidal concentration-response effect

    Feasibilty of Transcutaneous pCO2 Monitoring During Immediate Transition After Birth\u2014A Prospective Observational Study

    Get PDF
    Background: According to recommendations, non-invasive monitoring during neonatal resuscitation after birth includes heart rate (HR) and oxygen saturation (SpO2). Continuous transcutaneous monitoring of carbon dioxide partial pressure (tcpCO2) may further offer quantitative information on neonatal respiratory status. Objective: We aimed to investigate feasibility of tcpCO2 measurements in the delivery room during immediate neonatal transition and to compare the course of tcpCO2 between stable term and preterm infants. Methods: Neonates without need for cardio-respiratory intervention during immediate transition after birth were enrolled in a prospective observational study. In these term and preterm neonates, we measured HR and SpO2 by pulse oximetry on the right wrist and tcpCO2 with the sensor applied on the left hemithorax during the first 15 min after birth. Courses of tcpCO2 were analyzed in term and preterm neonates and groups were compared. Results: Fifty-three term (gestational age: 38.8 \ub1 0.9 weeks) and 13 preterm neonates (gestational age: 34.1 \ub1 1.5 weeks) were included. First tcpCO2 values were achieved in both groups at minute 4 after birth, which reached a stable plateau after the equilibration phase at minute 9. Mean tcpCO2 values 15 min after birth were 46.2 (95% CI 34.5\u201357.8) mmHg in term neonates and 48.5 (95%CI 43.0\u201354.1) mmHg in preterm neonates. Preterm and term infants did not show significant differences in the tcpCO2 values at any time point. Conclusion: This study demonstrates that tcpCO2 measurement is feasible during immediate neonatal transition after birth and that tcpCO2 values were comparable in stable term and preterm neonates

    Subsidizing extensive cattle production in the European Union has major implications for global agricultural trade and climate change

    Get PDF
    Pastureland maintenance is seen as a land-based measure to reduce dependency on feed concentrates and mitigate greenhouse gas (GHG) emissions from livestock production in the EU, while providing other ecosystems services. This paper assesses potential market-mediated impacts, including global Land Use Change (LUC) and GHG emissions, from increased subsidies to pasture-based livestock production in the EU. A tax recycling strategy (TRS) is simulated against a baseline up to 2030 under the shared socioeconomic pathway 2 (SSP2). This implies a budget-neutral increase in the level of pasture subsidies in individual Member States, as land subsidies for other cropping activities decrease. We employ the computable general equilibrium (CGE) model GTAP in its recursive-dynamic version, GTAP-RDEM, extended with the Multi-Regional Input-Output (MRIO) database FABIO to disaggregate agri-food sectors from 21 to 31. This approach allows considering price- and income-dependent feedbacks when assessing long-run changes in the global economy, improving the sectoral resolution relative to GTAP v10. The policy increases pastureland areas and cattle production in almost all EU Member States, whereas cropland and crop production decrease, causing significant changes across EU agri-food markets. Crop prices increase, leading to the reduced output of intensive animal production sectors, mainly pig and poultry. Cropland areas decrease and most EU countries increase imports of grain, oilseeds, and cakes, essentially soybean cake from Brazil and North America. While GHG emissions decrease in those EU countries where pasturelands expand mainly at the cost of croplands, GHG emissions increase in those countries where pastureland expansion comes with forest loss. As a result, net GHG emissions increase in the EU-27 in 2030 (+2.49 Mt CO2-eq). Emissions from LUC in major non-EU grain- and oilseed-exporting countries increase, e.g., by 102.52 Mt CO2-eq in Brazil and by 129.17 Mt CO2-eq in North America. The simulated policy shows that promoting extensive livestock per se does not meet the objectives of the Common Agricultural Policy and the EU Green Deal. The TRS should be complemented with policies to foster crop diversification and promote the use of domestic feed sources (e.g., legumes) to effectively ensure feed self-sufficiency and that extensive cattle production in the EU does not lead to deforestation in carbon-rich countries

    Challenges and pitfalls of experimental bariatric procedures in rats

    Get PDF
    Introduction: The impact of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) on obesity and obesity-related diseases is unquestionable. Up to now, the technical descriptions of these techniques in animals/rats have not been very comprehensive. Methods: For SG and RYGB, operating time, learning curve, and intraoperative mortality in relation to weight of the rat and type of anesthesia were recorded. Furthermore, a review of the literature on experimental approaches towards SG and RYGB in rats was carried out, merging in a detailed technical description for both procedures. Results: The data presented here revealed that the mean operating time for SG (69.4 +/- 22.2 min (SD)) was shorter than for RYGB (123.0 +/- 20.7 min). There is a learning curve for both procedures, resulting in a reduced operating time of up to 60% in SG and 35% in RYGB (p < 0.05; t-test). However, with increased weight, operating time increases to about 80 min for SG and about 120 min for RYGB. Obese rats have an increased intraoperative mortality rate of up to 50%. After gaseous anesthesia the mortality can be even higher. The literature search revealed 40 papers dealing with SG and RYGB in rats. 18 articles (45%) contained neither photographs nor illustrations; 14 articles (35%) did not mention the applied type of anesthesia. The mortality rate was described in 15 papers (37.5%). Conclusion: Experimental obesity surgery in rats is challenging. Because of the high mortality in obese rats operated under gaseous anesthesia, exercises to establish the techniques should be performed in small rats using intraperitoneal anesthesia. Copyright (C) 2012 S. Karger GmbH, Freibur

    Impact of bradycardia and hypoxemia on oxygenation in preterm infants requiring respiratory support at birth

    Get PDF
    Aim of the study: Analysis of the impact of bradycardia and hypoxemia on the course of cerebral and peripheral oxygenation parameters in preterm infants in need for respiratory support during foetal-to-neonatal transition. Methods: The first 15 min after birth of 150 preterm neonates in need for respiratory support born at the Division of Neonatology, Graz (Austria) were analyzed. Infants were divided into different groups according to duration of bradycardia exposure (no Bradycardia, brief bradycardia &lt;2 min, and prolonged bradycardia 652 min) and to systemic oxygen saturation (SpO2) value at 5 min of life (&lt;80% or 6580%). Analysis was performed considering the degree of bradycardia alone (step 1) and in association with the presence of hypoxemia (step 2). Results: In step 1, courses of SpO2 differed significantly between bradycardia groups (p = 0.002), while courses of cerebral regional oxygen saturation (crStO2) and cerebral fractional tissue oxygen extraction (cFTOE) were not influenced (p = 0.382 and p = 0.878). In step 2, the additional presence of hypoxemia had a significant impact on the courses of SpO2 (p &lt; 0.001), crStO2 (p &lt; 0.001) and cFTOE (p = 0.045). Conclusion: Our study shows that the degree of bradycardia has a significant impact on the course of SpO2 only, but when associated with the additional presence of hypoxemia a significant impact on cerebral oxygenation parameters was seen (crStO2, cFTOE). Furthermore, the additional presence of hypoxemia has a significant impact on FiO2 delivered. Our study emphasizes the importance of HR and SpO2 during neonatal resuscitation, underlining the relevance of hypoxemia during the early transitional phase
    • …
    corecore