110 research outputs found

    Synthesis, self-assembly-behavior and biomolecular recognition properties of thyminyl dipeptides

    Get PDF
    This article describes the synthesis of Thy-(Phe-Phe) and Thy-(Tyr-Tyr), two thymine-bearing dipeptides based on L-phenylalanine and L-tyrosine, the circular dichroism (CD), UV and dynamic light scattering (DLS) characterization of their self-assemblies, and a CD study of their interaction with nucleic acids (using homoadenine DNA and RNA) and serum proteins (employing BSA as model protein). DLS studies, alongside with CD and UV investigations conducted on aqueous solutions of the derivatives under different concentration and temperature conditions, showed the formation of extensive molecular architectures with hydrodynamic mean diameters higher than 300 nm, with Thy-(Tyr-Tyr) forming at pH=7.5 particularly large and stable networks, involving multiple units, connected by H-bonding, aromatic and hydrophobic interactions. Finally, the findings of our study suggested that Thy-(Phe-Phe) and Thy-(Tyr-Tyr), very stable in human serum, were able to bind BSA protein altering its secondary structure

    Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential

    Get PDF
    G-quadruplex (G4) oligonucleotides are higher-order DNA and RNA secondary structures of enormous relevance due to their implication in several biological processes and pathological states in different organisms. Strategies aiming at modulating human G4 structures and their interrelated functions are first-line approaches in modern research aiming at finding new potential anticancer treatments or G4-based aptamers for various biomedical and biotechnological applications. Plants offer a cornucopia of phytocompounds that, in many cases, are effective in binding and modulating the thermal stability of G4s and, on the other hand, contain almost unexplored G4 motifs in their genome that could inspire new biotechnological strategies. Herein, we describe some G4 structures found in plants, summarizing the existing knowledge of their functions and biological role. Moreover, we review some of the most promising G4 ligands isolated from vegetal sources and report on the known relationships between such phytochemicals and G4-mediated biological processes that make them potential leads in the pharmaceutical sector

    Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era

    Get PDF
    The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the biological environment and the difficulties related to their transport to target cells. These limiting aspects can now be overcome by resorting to chemical modifications in the drug and using appropriate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of nucleic acid targets, forming stable complexes and determining their loss of function. An alternative strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate their activity. In this review, the authors will examine the recent literature on nucleic acids-based strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and therapy of the coronavirus pandemic

    New G-quadruplex-forming oligodeoxynucleotides incorporating a bifunctional double-ended linker (DEL): Effects of del size and ODNs orientation on the topology, stability, and molecularity of del-G-quadruplexes

    Get PDF
    G-quadruplexes (G4s) are unusual secondary structures of DNA occurring in guanosine-rich oligodeoxynucleotide (ODN) strands that are extensively studied for their relevance to the biological processes in which they are involved. In this study, we report the synthesis of a new kind of G4-forming molecule named double-ended-linker ODN (DEL-ODN), in which two TG4T strands are attached to the two ends of symmetric, non-nucleotide linkers. Four DEL-ODNs differing for the incorporation of either a short or long linker and the directionality of the TG4T strands were synthesized, and their ability to form G4 structures and/or multimeric species was investigated by PAGE, HPLC–size-exclusion chromatography (HPLC–SEC), circular dichroism (CD), and NMR studies in comparison with the previously reported monomeric tetra-ended-linker (TEL) analogues and with the corresponding tetramolecular species (TG4T)4. The structural characterization of DEL-ODNs confirmed the formation of stable, bimolecular DEL-G4s for all DEL-ODNs, as well as of additional DEL-G4 multimers with higher molecular weights, thus suggesting a way towards the obtainment of thermally stable DNA nanostructures based on reticulated DEL-G4s

    3D Chitosan-Gallic Acid Complexes: Assessment of the Chemical and Biological Properties

    Get PDF
    Three-dimensional chitosan-gallic acid complexes were proposed and prepared for the first time by a simple adsorption process of gallic acid (GA) on three-dimensional chitosan structures (3D chitosan). Highly porous 3D devices facilitate a high GA load, up to 2015 mmol/kg at pH 4.0. The preservation of the redox state of GA released from 3D chitosan was confirmed by spectroscopic analyses. The antioxidant activity of 3D chitosan-GA complexes was assessed using the DPPH radical scavenging assay and was found to be dramatically higher than that of free chitosan. The mechanical property of 3D chitosan–GA complexes was also evaluated using a compression test. Finally, 3D chitosan–GA complexes showed a significant antimicrobial capacity against E. coli and S. aureus, selected, respectively, as a model strain for Gram-negative and Gram-positive bacteria. Our study demonstrated a new, simple, and eco-friendly approach to prepare functional chitosan-based complexes for nutraceutical, cosmeceutical, and pharmaceutical applications

    Porous silicon-based aptasensors: The next generation of label-free devices for health monitoring

    Get PDF
    Aptamers are artificial nucleic acid ligands identified and obtained from combinatorial libraries of synthetic nucleic acids through the in vitro process SELEX (systematic evolution of ligands by exponential enrichment). Aptamers are able to bind an ample range of non-nucleic acid targets with great specificity and affinity. Devices based on aptamers as bio-recognition elements open up a new generation of biosensors called aptasensors. This review focuses on some recent achievements in the design of advanced label-free optical aptasensors using porous silicon (PSi) as a transducer surface for the detection of pathogenic microorganisms and diagnostic molecules with high sensitivity, reliability and low limit of detection (LoD)

    Computational approach to design of aptamers to the receptor binding domain of sars-cov-2

    Get PDF
    The aim of the research. In this work, in silico selection of DNA-aptamers to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was performed using molecular modeling methods. Material and methods. A new computational approach to aptamer in silico selection is based on a cycle of simulations, including the stages of molecular modeling, molecular docking, molecular dynamic simulations, and quantum chemical calculations. To verify the obtained calculated results flow cytometry, fluorescence polarization, and small-angle X-ray scattering methods were applied. Results. An initial library consisted of 256 16-mer oligonucleotides was modeled. Based on molecular docking results, the only one aptamer (Apt16) was selected from the library as a starting aptamer to the RBD protein. For Apt16/RBD complex, molecular dynamic and quantum chemical calculations revealed the pairs of nucleotides and amino acids whose contribution to the binding between aptamer and RBD is the largest. Taking into account these data, Apt16 was subjected to the structure modifications in order to increase the binding with the RBD. Thus, a new aptamer Apt25 was designed. The procedure of 1) aptamer structure modeling/modification, 2) molecular docking, 3) molecular dynamic simulations, 4) quantum chemical calculations was performed sev-eral times. As a result, four aptamers (Apt16, Apt25, Apt27, Apt31) to the RBD were designed in silico without any preliminary experimental data. Binding of the each modeled aptamer to the RBD was studied in terms of interactions between residues in protein and nucleotides in the aptamers. Based on the simulation results, the strongest binding with the RBD was predicted for two Apt27 and Apt31aptamers. The calculated results are in good agreement with experimental data obtained by flow cytometry, fluorescence polarization, and small-angle X-ray scattering methods. Conclusion. The proposed computational approach to selection and refinement of aptamers is universal and can be used for wide range of molecular ligands and targets. Key words

    Exploring the DNA2-PNA heterotriplex formation in targeting the Bcl-2 gene promoter: A structural insight by physico-chemical and microsecond-scale MD investigation

    Get PDF
    Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups’ research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches. Specifically, we identified a seven bases-long PNA sequence, complementary to the longer loop of the main G-quadruplex structure formed by the bcl2midG4 promoter sequence, capable of downregulating the expression of the antiapoptotic Bcl-2 protein and enhancing the anticancer activity of an oncolytic adenovirus. Here, we extended the length of the PNA probe with the aim of including the double-stranded Bcl-2 promoter among the targets of the PNA probe. Our investigation primarily focused on the structural aspects of the resulting DNA2-PNA heterotriplex that were determined by employing conventional and accelerated microsecond-scale molecular dynamics simulations and chemical-physical analysis. Additionally, we conducted preliminary biological experiments using cytotoxicity assays on human A549 and MDA-MB-436 adenocarcinoma cell lines, employing the oncolytic adenovirus delivery strategy

    Structure- and interaction-based design of anti-SARS-CoV-2 aptamers

    Get PDF
    Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptorbinding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variant

    FLASH Knockdown Sensitizes Cells To Fas-Mediated Apoptosis via Down-Regulation of the Anti-Apoptotic Proteins, MCL-1 and Cflip Short

    Get PDF
    FLASH (FLICE-associated huge protein or CASP8AP2) is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis
    corecore