7,888 research outputs found

    W mass measurement in the ATLAS experiment

    Get PDF
    A precise measurement of the mass of the W boson will be essential to provide improved indirect constraints, e.g. on the Higgs boson mass. Using new methods developed for this challenging measurement, the performance expected is presented, evaluating various sources of systematic uncertainties, both of experimental and theoretical nature. The focus of this contribution will be on the expectation for the initial data taking and results will be shown for an integrated luminosity of 15 pb-1. Prospects on the total uncertainties which may be obtained with an integrated luminosity of 10 fb-1 will be given

    Electroweak Physics Measurements at the LHC

    Get PDF
    Although often quoted as a discovery collider, the LHC will also allow for precise measurements. In particular, in the electroweak sector, the determination of the masses of the top quark and the W boson will benefit from high statistics and new methods

    Υ\Upsilon radiative decays to light quark jets and color octet mechanism

    Full text link
    We study radiative decays of Υ\Upsilon to light quark jets in nonrelativistic QCD by taking both the color singlet and color octet bbˉb\bar b operators into consideration. The cut for quark jet energy and cut for the angle between two quark jets are introduced. The sensitivity to the soft and collinear singularities in the loop integrals are greatly reduced by these cuts. With the jet energy cut of about 1 GeV, and the jet angle cut of about 3636^\circ, the branching ratio for Υγqqˉ\Upsilon\to\gamma q\bar q is found to be 8.2×1048.2\times 10^{-4} from color singlet contributions. The color octet contributions could be much larger than that of color singlet, depending on the estimate of the color octet matrix elements. This process may provide a new test for the color octet mechanism in nonrelativistic QCD.Comment: journal version; a few references adde

    Atomic structure and vibrational properties of icosahedral B4_4C boron carbide

    Full text link
    The atomic structure of icosahedral B4_4C boron carbide is determined by comparing existing infra-red absorption and Raman diffusion measurements with the predictions of accurate {\it ab initio} lattice-dynamical calculations performed for different structural models. This allows us to unambiguously determine the location of the carbon atom within the boron icosahedron, a task presently beyond X-ray and neutron diffraction ability. By examining the inter- and intra-icosahedral contributions to the stiffness we show that, contrary to recent conjectures, intra-icosahedral bonds are harder.Comment: 9 pages including 3 figures, accepted in Physical Review Letter

    Z boson transverse momentum spectrum from the lepton angular distributions

    Get PDF
    In view of recent discussions concerning the possibly limiting energy resolution systematics on the measurement of the Z boson transverse momentum distribution at hadron colliders, we propose a novel measurement method based on the angular distributions of the decay leptons. We also introduce a phenomenological parametrization of the transverse momentum distribution that adapts well to all currently available predictions, a useful tool to quantify their differences.Comment: 12 pages, 6 figure

    Calculation of αˉQ.E.D.\bar{\alpha}_{\rm Q.E.D.} on the Z

    Full text link
    We perform a new, detailed calculation of the hadronic contributions to the running electromagnetic coupling, αˉ\bar{\alpha}, defined on the Z particle (91 GeV). We find for the hadronic contribution, including radiative corrections, 10^5\times \deltav_{\rm had.}\alpha(M_Z^2)= 2740\pm12, or, excluding the top quark contribution, 10^5\times \deltav_{\rm had.}\alpha^{(5)}(M_Z^2)= 2747\pm12. Adding the pure QED corrections we get a value for the running electromagnetic coupling of αˉQ.E.D.(MZ2)=1128.965±0.017.\bar{\alpha}_{\rm Q.E.D.}(M_Z^2)= {{1}\over{128.965\pm0.017}}.Comment: Version to appear in Phys. Rev. D. Plain TeX fil

    Investigation of conduction band structure, electron scattering mechanisms and phase transitions in indium selenide by means of transport measurements under pressure

    Full text link
    In this work we report on Hall effect, resistivity and thermopower measurements in n-type indium selenide at room temperature under either hydrostatic and quasi-hydrostatic pressure. Up to 40 kbar (= 4 GPa), the decrease of carrier concentration as the pressure increases is explained through the existence of a subsidiary minimum in the conduction band. This minimum shifts towards lower energies under pressure, with a pressure coefficient of about -105 meV/GPa, and its related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. The pressure value at which the electron trapping starts is shown to depend on the electron concentration at ambient pressure and the dimensionality of the electron gas. At low pressures the electron mobility increases under pressure for both 3D and 2D electrons, the increase rate being higher for 2D electrons, which is shown to be coherent with previous scattering mechanisms models. The phase transition from the semiconductor layered phase to the metallic sodium cloride phase is observed as a drop in resistivity around 105 kbar, but above 40 kbar a sharp nonreversible increase of the carrier concentration is observed, which is attributed to the formation of donor defects as precursors of the phase transition.Comment: 18 pages, Latex, 10 postscript figure

    Semileptonic B decays into even parity charmed mesons

    Get PDF
    By using a constituent quark model we compute the form factors relevant to semileptonic transitions of B mesons into low-lying p-wave charmed mesons. We evaluate the q^2 dependence of these form factors and compare them with other model calculations. The Isgur-Wise functions tau(1/2) and tau(3/2) are also obtained in the heavy quark limit of our results.Comment: 11 pages, 2 figure

    D_s spectrum and leptonic decays with Fermilab heavy quarks and improved staggered light quarks

    Full text link
    We present preliminary results for the D_s meson spectrum and decay constants in unquenched lattice QCD. Simulations are carried out with 2+1 dynamical quarks using gauge configurations generated by the MILC collaboration. We use the ``asqtad'' a^2 improved staggered action for the light quarks, and the clover heavy quark action with the Fermilab interpretation. We compare our spectrum results with the newly discovered 0+ and 1+ states in the D_s system.Comment: 3pp. Presented at 21st International Symposium on Lattice Field Theory (LATTICE 2003), Tsukuba, Ibaraki, Japan, 15-19 Jul 200

    Cyclotron resonance lineshape in a Wigner crystal

    Full text link
    The cyclotron resonance absorption spectrum in a Wigner crystal is calculated. Effects of spin-splitting are modelled by substitutional disorder, and calculated in the coherent potential approximation. Due to the increasing strength of the dipole-dipole interaction, the results show a crossover from a double-peak spectrum at small filling factors to a single-peak spectrum at filling factors \agt 1/6. Radiation damping and magnetophonon scattering can also influence the cyclotron resonance. The results are in very good agreement with experiments.Comment: 4 pages REVTEX, attempt to append 3 figures that seem to have been lost last tim
    corecore