6 research outputs found

    Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice

    Get PDF
    Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44

    Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations

    No full text
    Sulfur dioxide (SO 2 ) is probably one of the most versatile and efficient additives used in winemaking due to its antiseptic and antioxidant properties. This compound is also important for minimizing phenolic polymerization rate and color loss during wine aging. However, allergies caused by SO 2 -derived compounds, namely the sulfites, are becoming more frequent, causing symptoms such as headaches, nausea, gastric irritation, and breathing difficulties in asthma patients. Consequently, the legislated maximum concentration of SO 2 allowed in wines has been gradually reduced. For this reason, it is crucial in a competitive global winemaking market strategy, to reduce or even eliminate the use of SO 2 as a preservative and to search for new healthier and safe strategies. This work gives an overview of the main methodologies that have been proposed so far and that have potential to be used in winemaking as an alternative to SO 2 . The addition of compounds such as dimethyl dicarbonate, bacteriocins, phenolic compounds, and lysozyme, and the use of physical methods, namely pulsed electric fields, ultrasound, ultraviolet radiation, and high pressure are discussed and critically evaluated
    corecore