17 research outputs found

    Nanomedicine and mammalian sperm: lessons from the porcine model

    No full text
    Biomedical nanotechnology allows us to engineer versatile nanosized platforms that are comparable in size to biological molecules and intracellular organelles. These platforms can be loaded with large amounts of biological cargo, administered systemically and act at a distance, target specific cell populations, undergo intracellular internalization via endogenous uptake mechanisms, and act as contrast agents or release cargo for therapeutic purposes. Over recent years, nanomaterials have been increasingly viewed as favorable candidates for intragamete delivery. Particularly in the case of sperm, nanomaterial-based approaches have been shown to improve the efficacy of existing techniques such as sperm-mediated gene transfer, loading sperm with exogenous proteins, and tagging sperm for subsequent sex- or function-based sorting. In this short review, we provide an outline of the current state of nanotechnology for biomedical applications in reproductive biology and present highlights from a series of our studies evaluating the use of specialized silica nanoparticles in boar sperm as a potential delivery vehicle into mammalian gametes. The encouraging data obtained already from the porcine model in our laboratory have formed the basis for ethical approval of similar experiments in human sperm, thereby bringing us a step closer toward the potential use of this novel technology in the clinical environment

    Functionalization of mesoporous silica nanoparticles with a cell-penetrating peptide to target mammalian sperm in vitro.

    No full text
    This study aimed to investigate the effects of actively targeting mesoporous silica nanoparticles (MSNPs) toward mammalian sperm with a cell-penetrating peptide (C105Y), with subsequent analysis of binding rates and nano-safety profiles.Boar sperm were exposed in vitro to C105Y-functionalized MSNPs or free C105Y, in a series of increasing doses for up to 2 h, followed by the evaluation of sperm motility, kinematic parameters, acrosome morphology, MSNP-sperm binding and cell fluorescence levels.C105Y-functionalized MSNPs preserved their biocompatibility with sperm, and exhibited an approximately fourfold increase in affinity toward gametes, compared with unmodified MSNPs, during the early stages of incubation.Our findings support the application of MSNPs and active targeting to sperm as valuable tools for reproductive biology

    Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature.

    No full text
    Currently, even the most sophisticated methods of assisted reproductive technology (ART) allow us to achieve live births in only approximately 30% of patients, indicating that our understanding of the fine mechanisms underlying reproduction is far from ideal. One of the main challenges associated with studies of gamete structure and function is that these cells are remarkably resistant towards the uptake of exogenous substances, including 'molecular research tools' such as drugs, biomolecules and intracellular markers. This phenomenon can affect not only the performance of reproductive biology research techniques, but also the outcomes of the in vitro handling of gametes, which forms the cornerstone of ART. Improvement of intra-gamete delivery in a non-aggressive fashion is vital for the investigation of gamete physiology, and the advancement of infertility treatment. In this review, we outline the current state of nanomaterial-mediated delivery into gametes and embryos in vitro, and discuss the potential of a novel exciting drug delivery technology, based upon the use of targeted 'natural' nanoparticles known as extracellular vesicles (EVs), for reproductive science and ART, given the promising emerging data from other fields.A comprehensive electronic search of PubMed and Web of Science databases was performed using the following keywords: 'nanoparticles', 'nanomaterials', 'cell-penetrating peptides', 'sperm', 'oocyte', 'egg', 'embryo', 'exosomes', 'microvesicles', 'extracellular vesicles', 'delivery', 'reproduction', to identify the relevant research and review articles, published in English up to January 2015. The reference lists of identified publication were then scanned to extract additional relevant publications.Biocompatible engineered nanomaterials with high loading capacity, stability and selective affinity represent a potential versatile tool for the minimally invasive internalization of molecular cargo into gametes and embryos. However, it is becoming increasingly clear that the translation of these experimental tools into clinical applications is likely to be limited by their non-biodegradable nature. To allow the subsequent use of these methodologies for clinical ART, studies should utilize biodegradable delivery platforms, which mimic natural mechanisms of molecular cargo trafficking as closely as possible. Currently, EVs represent the most physiological intracellular delivery tools for reproductive science and medicine. These natural mediators of cell communication combine the benefits of engineered nanomaterials, such as the potential for in vitro production, targeting and loading, with the essential feature of biodegradability.We anticipate that future investigations into the possibility of applying EVs for the intentional intracellular delivery of molecular compounds into gametes and embryos will open new horizons for reproductive science and clinical ART, ultimately leading to improvements in patient care

    Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Get PDF
    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs. Graphical Abstract: [Figure not available: see fulltext.
    corecore