56 research outputs found

    Field assessment of the operating procedures of a semi-quantitative G6PD Biosensor to improve repeatability of routine testing

    Get PDF
    In remote communities, diagnosis of G6PD deficiency is challenging. We assessed the impact of modified test procedures and delayed testing for the point-of-care diagnostic STANDARD G6PD (SDBiosensor, RoK), and evaluated recommended cut-offs. We tested capillary blood from fingerpricks (Standard Method) and a microtainer (BD, USA; Method 1), venous blood from a vacutainer (BD, USA; Method 2), varied sample application methods (Methods 3), and used micropipettes rather than the test’s single-use pipette (Method 4). Repeatability was assessed by comparing median differences between paired measurements. All methods were tested 20 times under laboratory conditions on three volunteers. The Standard Method and the method with best repeatability were tested in Indonesia and Nepal. In Indonesia 60 participants were tested in duplicate by both methods, in Nepal 120 participants were tested in duplicate by either method. The adjusted male median (AMM) of the Biosensor Standard Method readings was defined as 100% activity. In Indonesia, the difference between paired readings of the Standard and modified methods was compared to assess the impact of delayed testing. In the pilot study repeatability didn’t differ significantly (p = 0.381); Method 3 showed lowest variability. One Nepalese participant had <30% activity, one Indonesian and 10 Nepalese participants had intermediate activity (≥30% to <70% activity). Repeatability didn’t differ significantly in Indonesia (Standard: 0.2U/gHb [IQR: 0.1–0.4]; Method 3: 0.3U/gHb [IQR: 0.1–0.5]; p = 0.425) or Nepal (Standard: 0.4U/gHb [IQR: 0.2–0.6]; Method 3: 0.3U/gHb [IQR: 0.1–0.6]; p = 0.330). Median G6PD measurements by Method 3 were 0.4U/gHb (IQR: -0.2 to 0.7, p = 0.005) higher after a 5-hour delay compared to the Standard Method. The definition of 100% activity by the Standard Method matched the manufacturer-recommended cut-off for 70% activity. We couldn’t improve repeatability. Delays of up to 5 hours didn’t result in a clinically relevant difference in measured G6PD activity. The manufacturer’s recommended cut-off for intermediate deficiency is conservative

    Micro-stratification of malaria risk in Nepal: implications for malaria control and elimination

    No full text
    Background:A significant reduction in malaria cases over the recent years in Nepal has encouraged the government to adopt a goal of "malaria-free nation by 2025." Nevertheless, to achieve this goal, it is critical to identify the epidemiological burden of malaria by specific regions and areas for an effective targeted intervention. The main objective of this study was to estimate the risk of malaria at Village Development Committee (VDC) level in Nepal based on disease, vector, parasite, and geography. Methods:In 2012, the micro-stratification of malaria risk was carried out in 75 districts of Nepal. Instruments such as a questionnaire, case record forms, and guidelines for malaria micro-stratification were developed and pre-tested for necessary adaptations. Village Development Committee (VDC)-wise malaria data were analyzed using exploratory statistics and were stratified by geographical variables that contributed to the risk of malaria. To understand the transmission risk at VDC level, overlay analysis was done using ArcGIS 10. To ensure transparent, reproducible, and comprehensible risk assessment, standard scoring method was selected and utilized for data from 2009 to 2011. Thus identified, three major variables (key determinants) were given weights (wt.) accordingly to stratification of the malaria risk (disease burden, "0.3" wt.; ecology/vector transmission, "0.5" wt.; and vulnerability-population movement, "0.2" wt.). Malaria risk in a VDC was determined based on the overall scores and classified into four categories: no risk, low risk, moderate risk, and high risk. Results:Analyzing the overall risk based on scoring of the total VDCs (n = 3976), 54 (1.36%), 201 (5.06%), 999 (25.13%), and 2718 (68.36%) were identified as high-, moderate-, low-, and no-risk categories for malaria, respectively. Based on the population statistics, 3.62%, 9.79%, 34.52%, and 52.05% of the country's total population live in high-risk, moderate-risk, low-risk, and no-risk VDCs for malaria, respectively. Our micro-stratification study estimates are 100,000 population at high risk. Regional distribution showed that the majority of the high-risk VDCs were identified in the Far- and Mid-western regions (19 and 18 VDCs) followed by Central and Western regions (10 and 7 VDCs) with no high-risk VDCs in the Eastern region. Similarly, 77, 59, 27, 24, and 14 VDCs of the Central, Mid-western, Western, Eastern, and Far-western regions, respectively, were found under moderate malaria risk. Of the low-risk VDCs, 353, 215, 191, 148, and 92 were respectively from the Central, Eastern, Western, Far-western, and Mid-western regions. Conclusions:The current micro-stratification study provides insights on malaria risk up to the VDC level. This will help the malaria elimination program to target interventions at the local level thereby ensuring the best utilization of available resources to substantially narrowed-down target areas. With further updates and refinement, the micro-stratification approach can be employed to identify the risk areas up to smaller units within the VDCs (ward and villages)

    Toolkit for monitoring and evaluation of indoor residual spraying for visceral leishmaniasis control in the Indian subcontinent: application and results.

    Get PDF
    Background. We field tested and validated a newly developed monitoring and evaluation (M&E) toolkit for indoor residual spraying to be used by the supervisors at different levels of the national kala-azar elimination programs in Bangladesh, India and Nepal. Methods. Methods included document analysis, in-depth interviews, direct observation of spraying squads, and entomological-chemical assessments (bioassay, susceptibility test, chemical analysis of insecticide residues on sprayed surfaces, vector density measurements at baseline, and three follow-up surveys). Results. We found that the documentation at district offices was fairly complete; important shortcomings included insufficient training of spraying squads and supervisors, deficient spray equipment, poor spraying performance, lack of protective clothing, limited coverage of houses resulting in low bioavailability of the insecticide on sprayed surfaces, and reduced vector susceptibility to DDT in India, which limited the impact on vector densities. Conclusion. The M&E toolkit is a useful instrument for detecting constraints in IRS operations and to trigger timely response

    Analysis of erroneous data entries in paper based and electronic data collection

    No full text
    Objective: Electronic data collection (EDC) has become a suitable alternative to paper based data collection (PBDC) in biomedical research even in resource poor settings. During a survey in Nepal, data were collected using both systems and data entry errors compared between both methods. Collected data were checked for completeness, values outside of realistic ranges, internal logic and date variables for reasonable time frames. Variables were grouped into 5 categories and the number of discordant entries were compared between both systems, overall and per variable category. Results: Data from 52 variables collected from 358 participants were available. Discrepancies between both data sets were found in 12.6% of all entries (2352/18,616). Differences between data points were identified in 18.0% (643/3580) of continuous variables, 15.8% of time variables (113/716), 13.0% of date variables (140/1074), 12.0% of text variables (86/716), and 10.9% of categorical variables (1370/12,530). Overall 64% (1499/2352) of all discrepancies were due to data omissions, 76.6% (1148/1499) of missing entries were among categorical data. Omissions in PBDC (n = 1002) were twice as frequent as in EDC (n = 497, p < 0.001). Data omissions, specifically among categorical variables were identified as the greatest source of error. If designed accordingly, EDC can address this short fall effectively.</br

    Human resource assessment for scaling up VL active case detection in Bangladesh, India and Nepal.

    No full text
    OBJECTIVES To determine whether medical staff at PHC level would have the time to take up additional activities such as 1-day fever camps for active VL case detection. METHODS This article assessed the workload of health staff of different professional categories working at health facilities in Bangladesh, India and Nepal. Data were collected from different sites in high endemic VL areas. The study population was the health staff of government health facilities at all levels. Workload indicators of staffing need (WISN) software were adopted to carry out the analysis of staff workload and their availability in the selected health facility. The WISN difference and WISN ratio for a particular health facility were calculated from actual staffing available and calculated staffing requirement. RESULTS The results showed a mixed picture of the availability of health workers. In most settings of Bangladesh and India, physicians with or without laboratory technicians would have time for active case detection. In Nepal, this would be performed by trained nurses and paramedical personnel. CONCLUSION If all vacant posts were filled, active case detection could be performed more easily. The elimination programme can be scaled up with the current staffing levels in the endemic areas with some short training if and when necessary
    corecore