23 research outputs found

    A missense mutation in TRAPPC6A leads to build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features.

    Get PDF
    Childhood onset clinical syndromes involving intellectual disability and dysmorphic features, such as polydactyly, suggest common developmental pathways link seemingly unrelated phenotypes. We identified a consanguineous family of Saudi origin with varying complex features including intellectual disability, speech delay, facial dysmorphism and polydactyly. Combining, microarray based comparative genomic hybridisation (CGH) to identify regions of homozygosity, with exome sequencing, led to the identification of homozygous mutations in five candidate genes (RSPH6A, ANKK1, AMOTL1, ALKBH8, TRAPPC6A), all of which appear to be pathogenic as predicted by Proven, SIFT and PolyPhen2 and segregate perfectly with the disease phenotype. We therefore looked for differences in expression levels of each protein in HEK293 cells, expressing either the wild-type or mutant full-length cDNA construct. Unexpectedly, wild-type TRAPPC6A appeared to be unstable, but addition of the proteasome inhibitor MG132 stabilised its expression. Mutations have previously been reported in several members of the TRAPP complex of proteins, including TRAPPC2, TRAPPC9 and TRAPPC11, resulting in disorders involving skeletal abnormalities, intellectual disability, speech impairment and developmental delay. TRAPPC6A joins a growing list of proteins belonging to the TRAPP complex, implicated in clinical syndromes with neurodevelopmental abnormalities

    Floating-Harbor syndrome: Presentation of the first Romanian patient with a SRCAP mutation and review of the literature

    No full text
    Floating-Harbor syndrome (FHS) is a rare autosomal dominant syndrome characterized by short stature with delayed bone age, retarded speech development, intellectual disability and dysmorphic facial features. Recently, dominant mutations almost exclusively clustered in the final exon of the Snf2-related CREBBP activator protein (SRCAP) gene were identified to cause FHS. Here, we report a boy with short stature, speech delay, mild intellectual disability, dysmorphic features, and with genetically confirmed FHS. To the best of our knowledge, this is the first molecularly confirmed case with this syndrome reported in Romania. An intensive program of cognitive and speech stimulation, as well as yearly neurological, psychological, ophthalmological, otorhinolaryngological, pediatric and endocrinological monitoring for our patient were designed. We propose a checklist of clinical features suggestive of FHS, based on the main clinical features, in order to facilitate the diagnosis and clinical management of this rare condition

    Intellectual disability associated with craniofacial dysmorphism, cleft palate, and congenital heart defect due to a de novo MEIS2

    No full text
    Intellectual disability (ID) has an estimated prevalence of 1.5%-2%. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that sporadic ID cases result from de novo mutations in genes associated with ID. Here, we report on a 10-year-old girl, who has been regularly presented in our neuropediatric and genetic outpatient clinic. A median cleft palate and a heart defect were surgically corrected in infancy. Apart from ID, she has behavioral anomalies, muscular hypotonia, scoliosis, and hypermobile joints. The facial phenotype is characterized by arched eyebrows, mildly upslanting long palpebral fissures, prominent nasal tip, and large, protruding ears. Trio WES revealed a de novo missense variant in MEIS2 (c.998G>A; p.Arg333Lys). Haploinsufficiency of MEIS2 had been discussed as the most likely mechanism of the microdeletion 5q14-associated complex phenotype with ID, cleft palate, and heart defect. Recently, four studies including in total 17 individuals with intragenic MEIS2 variants were reported. Here we present the evolution of the clinical phenotype and compare with the data of known individuals
    corecore