196 research outputs found
Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform
The Ninja data analysis challenge allowed the study of the sensitivity of
data analysis pipelines to binary black hole numerical relativity waveforms in
simulated Gaussian noise at the design level of the LIGO observatory and the
VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert
Huang Transform, utilizing a detection stage and a characterization stage:
detection is performed by triggering on excess instantaneous power,
characterization is performed by displaying the kernel density enhanced (KD)
time-frequency trace of the signal. Using the simulated data based on the two
LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in
coincidence, with 43 missed events characterized by signal to noise ratio SNR
less than 10. Characterization of the detected signals revealed the merger part
of the waveform in high time and frequency resolution, free from time-frequency
uncertainty. We estimated the timelag of the signals between the detectors
based on the optimal overlap of the individual KD time-frequency maps, yielding
estimates accurate within a fraction of a millisecond for half of the events. A
coherent addition of the data sets according to the estimated timelag
eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200
Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors
Gravitational waves deliver information in exquisite detail about
astrophysical phenomena, among them the collision of two black holes, a system
completely invisible to the eyes of electromagnetic telescopes. Models that
predict gravitational wave signals from likely sources are crucial for the
success of this endeavor. Modeling binary black hole sources of gravitational
radiation requires solving the Eintein equations of General Relativity using
powerful computer hardware and sophisticated numerical algorithms. This
proceeding presents where we are in understanding ground-based gravitational
waves resulting from the merger of black holes and the implications of these
sources for the advent of gravitational-wave astronomy.Comment: Appeared in the Proceedings of 2014 Sant Cugat Forum on Astrophysics.
Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin:
Springer-Verlag
Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity
The accurate modeling of gravitational radiation is a key issue for
gravitational wave astronomy. As simulation codes reach higher accuracy,
systematic errors inherent in current numerical relativity wave-extraction
methods become evident, and may lead to a wrong astrophysical interpretation of
the data. In this paper, we give a detailed description of the
Cauchy-characteristic extraction technique applied to binary black hole
inspiral and merger evolutions to obtain gravitational waveforms that are
defined unambiguously, that is, at future null infinity. By this method we
remove finite-radius approximations and the need to extrapolate data from the
near zone. Further, we demonstrate that the method is free of gauge effects and
thus is affected only by numerical error. Various consistency checks reveal
that energy and angular momentum are conserved to high precision and agree very
well with extrapolated data. In addition, we revisit the computation of the
gravitational recoil and find that finite radius extrapolation very well
approximates the result at \scri. However, the (non-convergent) systematic
differences to extrapolated data are of the same order of magnitude as the
(convergent) discretisation error of the Cauchy evolution hence highlighting
the need for correct wave-extraction.Comment: 41 pages, 8 figures, 2 tables, added references, fixed typos. Version
matches published version
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
Rapid scale-up and production of active-loaded PEGylated liposomes
Manufacturing of liposomal nanomedicines (e.g. Doxil®/Caelyx®) is a challenging and slow process based on multiple-vessel and batch processing techniques. As a result, the translation of these nanomedicines from bench to bedside has been limited. Microfluidic-based manufacturing offers the opportunity to address this issue, and de-risk the wider adoption of nanomedicines. Here we demonstrate the applicability of microfluidics for continuous manufacturing of PEGylated liposomes encapsulating ammonium sulfate (250 mM). Doxorubicin was subsequently active-loaded into these pre-formed liposomes. Critical process parameters and material considerations demonstrated to influence the liposomal product attributes included solvent selection and lipid concentration, flow rate ratio, and temperature and duration used for drug loading. However, the total flow rate did not affect the liposome product characteristics, allowing high production speeds to be adopted. The final liposomal product comprised of 80–100 nm vesicles (PDI < 0.2) encapsulating ≥ 90% doxorubicin, with matching release profiles to the innovator product and is stable for at least 6 months. Additionally, vincristine and acridine orange were active-loaded into these PEGylated liposomes (≥ 90% and ~100 nm in size) using the same process. These results demonstrate the ability to produce active-loaded PEGylated liposomes with high encapsulation efficiencies and particle sizes which support tumour targeting
Status of NINJA: the Numerical INJection Analysis project
The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise
The Current Status of Binary Black Hole Simulations in Numerical Relativity
Since the breakthroughs in 2005 which have led to long term stable solutions
of the binary black hole problem in numerical relativity, much progress has
been made. I present here a short summary of the state of the field, including
the capabilities of numerical relativity codes, recent physical results
obtained from simulations, and improvements to the methods used to evolve and
analyse binary black hole spacetimes.Comment: 14 pages; minor changes and corrections in response to referee
Triangulation of gravitational wave sources with a network of detectors
There is significant benefit to be gained by pursuing multi-messenger
astronomy with gravitational wave and electromagnetic observations. In order to
undertake electromagnetic follow-ups of gravitational wave signals, it will be
necessary to accurately localize them in the sky. Since gravitational wave
detectors are not inherently pointing instruments, localization will occur
primarily through triangulation with a network of detectors. We investigate the
expected timing accuracy for observed signals and the consequences for
localization. In addition, we discuss the effect of systematic uncertainties in
the waveform and calibration of the instruments on the localization of sources.
We provide illustrative results of timing and localization accuracy as well as
systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure
Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors
As the ground-based gravitational-wave telescopes LIGO, Virgo, and GEO 600
approach the era of first detections, we review the current knowledge of the
coalescence rates and the mass and spin distributions of merging neutron-star
and black-hole binaries. We emphasize the bi-directional connection between
gravitational-wave astronomy and conventional astrophysics. Astrophysical input
will make possible informed decisions about optimal detector configurations and
search techniques. Meanwhile, rate upper limits, detected merger rates, and the
distribution of masses and spins measured by gravitational-wave searches will
constrain astrophysical parameters through comparisons with astrophysical
models. Future developments necessary to the success of gravitational-wave
astronomy are discussed.Comment: Replaced with version accepted by CQG
- …