8,272 research outputs found
User community development for the space transportation system/Skylab
The New User Function plan for identifying beneficial uses of space is described. Critical issues such as funding, manpower, and protection of user proprietary rights are discussed along with common barriers which impede the development of a user community. Studies for developing methodologies of identifying new users and uses of the space transportation system are included
The impact of prior information on estimates of disease transmissibility using Bayesian tools
The basic reproductive number (R₀) and the distribution of the serial interval (SI) are often used to quantify transmission during an infectious disease outbreak. In this paper, we present estimates of R₀ and SI from the 2003 SARS outbreak in Hong Kong and Singapore, and the 2009 pandemic influenza A(H1N1) outbreak in South Africa using methods that expand upon an existing Bayesian framework. This expanded framework allows for the incorporation of additional information, such as contact tracing or household data, through prior distributions. The results for the R₀ and the SI from the influenza outbreak in South Africa were similar regardless of the prior information (R0 = 1.36-1.46, μ = 2.0-2.7, μ = mean of the SI). The estimates of R₀ and μ for the SARS outbreak ranged from 2.0-4.4 and 7.4-11.3, respectively, and were shown to vary depending on the use of contact tracing data. The impact of the contact tracing data was likely due to the small number of SARS cases relative to the size of the contact tracing sample
User benefits and funding strategies
The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others
Constraints on Dimensional Warped Spaces
In order to investigate the phenomenological implications of allowing gauge
fields to propagate in warped spaces of more than five dimensions, we consider
a toy model of a space warped by the presence of a anisotropic bulk
cosmological constant. After solving the Einstein equation, three classes of
solutions are found, those in which the additional () dimensions are
growing, shrinking or remaining constant. It is found that gauge fields
propagating in these spaces have a significantly different Kaluza Klein (KK)
mass spectrum and couplings from that of the Randall and Sundrum model. This
leads to a greatly reduced lower bound on the KK scale, arising from
electroweak constraints, for spaces growing towards the IR brane.Comment: 6 pages, 5 figures PASCOS2010 International Symposium proceedin
Development of methodologies and procedures for identifying STS users and uses
A study was conducted to identify new uses and users of the new Space Transporation System (STS) within the domestic government sector. The study develops a series of analytical techniques and well-defined functions structured as an integrated planning process to assure efficient and meaningful use of the STS. The purpose of the study is to provide NASA with the following functions: (1) to realize efficient and economic use of the STS and other NASA capabilities, (2) to identify new users and uses of the STS, (3) to contribute to organized planning activities for both current and future programs, and (4) to air in analyzing uses of NASA's overall capabilities
Truthful Multi-unit Procurements with Budgets
We study procurement games where each seller supplies multiple units of his
item, with a cost per unit known only to him. The buyer can purchase any number
of units from each seller, values different combinations of the items
differently, and has a budget for his total payment.
For a special class of procurement games, the {\em bounded knapsack} problem,
we show that no universally truthful budget-feasible mechanism can approximate
the optimal value of the buyer within , where is the total number of
units of all items available. We then construct a polynomial-time mechanism
that gives a -approximation for procurement games with {\em concave
additive valuations}, which include bounded knapsack as a special case. Our
mechanism is thus optimal up to a constant factor. Moreover, for the bounded
knapsack problem, given the well-known FPTAS, our results imply there is a
provable gap between the optimization domain and the mechanism design domain.
Finally, for procurement games with {\em sub-additive valuations}, we
construct a universally truthful budget-feasible mechanism that gives an
-approximation in polynomial time with a
demand oracle.Comment: To appear at WINE 201
Two-dimensional colloidal fluids exhibiting pattern formation
Fluids with competing short range attraction and long range repulsive
interactions between the particles can exhibit a variety of microphase
separated structures. We develop a lattice-gas (generalised Ising) model and
analyse the phase diagram using Monte Carlo computer simulations and also with
density functional theory (DFT). The DFT predictions for the structures formed
are in good agreement with the results from the simulations, which occur in the
portion of the phase diagram where the theory predicts the uniform fluid to be
linearly unstable. However, the mean-field DFT does not correctly describe the
transitions between the different morphologies, which the simulations show to
be analogous to micelle formation. We determine how the heat capacity varies as
the model parameters are changed. There are peaks in the heat capacity at state
points where the morphology changes occur. We also map the lattice model onto a
continuum DFT that facilitates a simplification of the stability analysis of
the uniform fluid.Comment: 13 pages, 15 figure
Structure, phase behavior and inhomogeneous fluid properties of binary dendrimer mixtures
The effective pair potentials between different kinds of dendrimers in
solution can be well approximated by appropriate Gaussian functions. We find
that in binary dendrimer mixtures the range and strength of the effective
interactions depend strongly upon the specific dendrimer architecture. We
consider two different types of dendrimer mixtures, employing the Gaussian
effective pair potentials, to determine the bulk fluid structure and phase
behavior. Using a simple mean field density functional theory (DFT) we find
good agreement between theory and simulation results for the bulk fluid
structure. Depending on the mixture, we find bulk fluid-fluid phase separation
(macro-phase separation) or micro-phase separation, i.e., a transition to a
state characterized by undamped periodic concentration fluctuations. We also
determine the inhomogeneous fluid structure for confinement in spherical
cavities. Again, we find good agreement between the DFT and simulation results.
For the dendrimer mixture exhibiting micro-phase separation, we observe rather
striking pattern formation under confinement.Comment: 8 pages, 10 figure
- …
