18 research outputs found

    Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain

    Get PDF
    Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b

    The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone

    Get PDF
    PURPOSE: To evaluate the role of cytochrome 450 2D6 (CYP2D6) and ABCB1 variants on plasma risperidone concentrations and treatment response in 83 drug-naive patients experiencing a first episode of psychosis. ----- METHODS: All patients were treated with risperidone for 8 weeks. The CYP2D6 genotyping was performed by allele-specific PCR-restriction fragment length polymorphism analysis (for alleles *3,*4,*6) and long-distance PCR (for duplications and allele *5), while real-time PCR analysis was used for the ABCB1 G2677T/A and C3435T variants. Plasma concentrations of risperidone and 9-OH risperidone were measured by high-performance liquid chromatography. ----- RESULTS: The number of patients with the CYP2D6 wild type (wt)/wt, wt/mutation (mut) and mut/mut genotype was 43, 32 and 8, respectively. The number of patients with the ABCB1 2677G/G, G/T and T/T variants was 29, 42 and 12, respectively; those with the 3435CC, C/T and T/T variants was 25, 37 and 21, respectively. The CYP2D6 genotype had a strong effect on the steady-state dose-corrected plasma levels (C/D) of risperidone, its 9-OH metabolite and the active moiety, while the ABCB1 2677 T/T and 3435 T/T genotypes has similarly strong effects on the active moiety C/D. The CYP2D6 poor metabolizers had a significantly higher risperidone C/D and active moiety C/D and lower 9-OH risperidone C/D. The ABCB1 3435 T allele and the ABCB1 2667 T-3435 T haplotype carriers were more frequent among subjects without extrapyramidal syndromes. Patients showed significant improvements in positive and general symptoms, but not in negative symptoms. These changes were not related to variations in genetic and drug concentration data. ----- CONCLUSION: Our findings suggest that CYP2D6 and ABCB1 G2677T and C3435T may be useful determinants of risperidone plasma concentrations, but the clinical implications of these associations in relation to treatment response and side-effects remain unclear

    Analysis of Lipid Phase Behavior and Protein Conformational Changes in Nanolipoprotein Particles upon Entrapment in Sol–Gel-Derived Silica

    No full text
    The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol–gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5–50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein–lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins

    Controlled Release Matrix Tablets of Olanzapine: Influence of Polymers on the In Vitro Release and Bioavailability

    No full text
    Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects
    corecore