144 research outputs found
Two loop QCD vertices at the symmetric point
We compute the triple gluon, quark-gluon and ghost-gluon vertices of QCD at
the symmetric subtraction point at two loops in the MSbar scheme. In addition
we renormalize each of the three vertices in their respective momentum
subtraction schemes, MOMggg, MOMq and MOMh. The conversion functions of all the
wave functions, coupling constant and gauge parameter renormalization constants
of each of the schemes relative to MSbar are determined analytically. These are
then used to derive the three loop anomalous dimensions of the gluon, quark,
Faddeev-Popov ghost and gauge parameter as well as the beta-function in an
arbitrary linear covariant gauge for each MOM scheme. There is good agreement
of the latter with earlier Landau gauge numerical estimates of Chetyrkin and
Seidensticker.Comment: 36 latex pages, anc directory contains txt file with anomalous
dimensions, beta-functions, coupling constant mappings, conversion functions
and amplitudes in analytic for
Gluons at finite temperature in Landau gauge Yang--Mills theory
The infrared behavior of Yang-Mills theory at finite temperature provides
access to the role of confinement. In this review recent results on this topic
from lattice calculations and especially Dyson-Schwinger studies are discussed.
These indicate persistence of a residual confinement even in the
high-temperature phase. The confinement mechanism is very similar to the one in
the vacuum for the chromomagnetic sector. In the chromoelectric sector
screening occurs at the soft scale g^2T, although not leading to a perturbative
behavior.Comment: 15 pages, 4 figures, invited brief review for MPL
Searching for Quantum Solitons in a 3+1 Dimensional Chiral Yukawa Model
We search for static solitons stabilized by heavy fermions in a 3+1
dimensional Yukawa model. We compute the renormalized energy functional,
including the exact one-loop quantum corrections, and perform a variational
search for configurations that minimize the energy for a fixed fermion number.
We compute the quantum corrections using a phase shift parameterization, in
which we renormalize by identifying orders of the Born series with
corresponding Feynman diagrams. For higher-order terms in the Born series, we
develop a simplified calculational method. When applicable, we use the
derivative expansion to check our results. We observe marginally bound
configurations at large Yukawa coupling, and discuss their interpretation as
soliton solutions subject to general limitations of the model.Comment: 27 pp., 7 EPS files; email correspondence to [email protected]
Non-perturbative Propagators, Running Coupling and Dynamical Quark Mass of Landau gauge QCD
The coupled system of renormalized Dyson-Schwinger equations for the quark,
gluon and ghost propagators of Landau gauge QCD is solved within truncation
schemes. These employ bare as well as non-perturbative ansaetze for the
vertices such that the running coupling as well as the quark mass function are
independent of the renormalization point. The one-loop anomalous dimensions of
all propagators are reproduced. Dynamical chiral symmetry breaking is found,
the dynamically generated quark mass agrees well with phenomenological values
and corresponding results from lattice calculations. The effects of unquenching
the system are small. In particular the infrared behavior of the ghost and
gluon dressing functions found in previous studies is almost unchanged as long
as the number of light flavors is smaller than four.Comment: 34 pages, 10 figures, version to be published by Phys. Rev.
On the connection between Hamilton and Lagrange formalism in Quantum Field Theory
The connection between the Hamilton and the standard Lagrange formalism is
established for a generic Quantum Field Theory with vanishing vacuum
expectation values of the fundamental fields. The Effective Actions in both
formalisms are the same if and only if the fundamental fields and the momentum
fields are related by the stationarity condition. These momentum fields in
general differ from the canonical fields as defined via the Effective Action.
By means of functional methods a systematic procedure is presented to identify
the full correlation functions, which depend on the momentum fields, as
functionals of those usually appearing in the standard Lagrange formalism.
Whereas Lagrange correlation functions can be decomposed into tree diagrams the
decomposition of Hamilton correlation functions involves loop corrections
similar to those arising in n-particle effective actions. To demonstrate the
method we derive for theories with linearized interactions the propagators of
composite auxiliary fields and the ones of the fundamental degrees of freedom.
The formalism is then utilized in the case of Coulomb gauge Yang-Mills theory
for which the relations between the two-point correlation functions of the
transversal and longitudinal components of the conjugate momentum to the ones
of the gauge field are given.Comment: 25 pages, 24 figures, revised and extended version with an explicit
application of the formalism to Coulomb gauge QC
B=3 Tetrahedrally Symmetric Solitons in the Chiral Quark Soliton Model
In this paper, B=3 soliton solutions with tetrahedral symmetry are obtained
numerically in the chiral quark soliton model using the rational map ansatz.
The solution exhibits a triply degenerate bound spectrum of the quark orbits in
the background of tetrahedrally symmetric pion field configuration. The
corresponding baryon density is tetrahedral in shape. Our numerical technique
is independent on the baryon number and its application to is
straightforward.Comment: 4 pages, 3 figure
A novel probe of the vacuum of the lattice gluodynamics
We introduce a notion of minimal number of negative links on the lattice for
a given original configuration of SU(2) fields. Negative links correspond to a
large potential, not necessarily large action. The idea is that the minimal
number of negative links is a gauge invariant notion. To check this hypothesis
we measure correlator of two negative links, averaged over all the directions,
as function of the distance between the links. The inverse correlation length
coincides within the error bars with the lightest glueball mass.Comment: 6 pages, 2 figure
Propagators in Coulomb gauge from SU(2) lattice gauge theory
A thorough study of 4-dimensional SU(2) Yang-Mills theory in Coulomb gauge is
performed using large scale lattice simulations. The (equal-time) transverse
gluon propagator, the ghost form factor d(p) and the Coulomb potential V_{coul}
(p) ~ d^2(p) f(p)/p^2 are calculated. For large momenta p, the gluon propagator
decreases like 1/p^{1+\eta} with \eta =0.5(1). At low momentum, the propagator
is weakly momentum dependent. The small momentum behavior of the Coulomb
potential is consistent with linear confinement. We find that the inequality
\sigma_{coul} \ge \sigma comes close to be saturated. Finally, we provide
evidence that the ghost form factor d(p) and f(p) acquire IR singularities,
i.e., d(p) \propto 1/\sqrt{p} and f(p) \propto 1/p, respectively. It turns out
that the combination g_0^2 d_0(p) of the bare gauge coupling g_0 and the bare
ghost form factor d_0(p) is finite and therefore renormalization group
invariant.Comment: 10 pages, 7 figure
Production Processes as a Tool to Study Parameterizations of Quark Confinement
We introduce diquarks as separable correlations in the two-quark Green's
function to facilitate the description of baryons as relativistic three-quark
bound states. These states then emerge as solutions of Bethe-Salpeter equations
for quarks and diquarks that interact via quark exchange. When solving these
equations we consider various dressing functions for the free quark and diquark
propagators that prohibit the existence of corresponding asymptotic states and
thus effectively parameterize confinement. We study the implications of
qualitatively different dressing functions on the model predictions for the
masses of the octet baryons as well as the electromagnetic and strong form
factors of the nucleon. For different dressing functions we in particular
compare the predictions for kaon photoproduction, , and
associated strangeness production, with experimental data.
This leads to conclusions on the permissibility of different dressing
functions.Comment: 43 pages, Latex, 28 eps files included via epsfig; version to be
published in Physical Review
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
- …