17 research outputs found

    Cytotoxic evaluation and concurrent analysis of two diterpenes in the chloroform extract of Plectranthus barbatus using a validated HPTLC-UV method

    Get PDF
    The objective of this study was to develop a validated high-performance thin layer chromatography (HPTLC) method for the concurrent analysis of two diterpenes Sugiol (compound 1) and 11,14-dihydroxy-8,11,13-abietatrien-7-one (compound 2) in Plectranthus barbatus chloroform extract (PBCE) and to investigate cytotoxicity of both compounds. The chromatographic estimations were carried out using toluene : ethyl acetate : formic acid (8.2:1.3:0.5 v/v/v) as mobile phase. The compact spots of biomarkers were scanned at λmax= 275 nm. Cytotoxic evaluation of both compounds was performed using follicular thyroid cancer cells (FRO cells). A well resolved, compact and intense peaks of compound 1 (Rf = 0.550 ± 0.001) and compound 2 (Rf = 0.700 ± 0.002) were recorded. The proposed method for both compounds was recorded as simple, linear, precise (% RSD = 1.02-1.25), accurate (98-100%), robust and sensitive for the analysis of both compounds. Cytotoxicity evaluation showed significant cell cytotoxicity at 100 μg/mL concentration against the FRO cancer cells after 72 h of incubation. Both compounds were recorded as cytotoxic, however compound 1 showed significant cytotoxic effects. The proposed HPTLC method was found to be suitable for routine analysis of these two biomarkers in chloroform extract of P. barbatus. Both compounds were found to be cytotoxic against FRO cancer cells. KEY WORDS: Diterpenes, Sugiol, Plectranthus barbatus, Cytotoxicity, HPTLC Bull. Chem. Soc. Ethiop. 2018, 32(3), 407-419.DOI: https://dx.doi.org/10.4314/bcse.v32i3.

    In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I’yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Methods Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Results Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. Conclusions The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension

    Pharmacological Importance of Simple Phenolic Compounds on Inflammation, Cell Proliferation and Apoptosis with a Special Reference to β-D-Salicin and Hydroxybenzoic Acid

    No full text
    Simple phenolic (SP) compounds are natural products that exhibit multiple pharmacological functions. The best known of these compounds is β-D-salicin, the first discovered phenolic glycoside and salicylic acid, or 2-hydroxybenzoic acid (2-HBA). Both of these compounds have attracted the interest of scientists in various interdisciplinary fields, including chemistry, pharmacology and medicine. Although β-D-salicin is found in various plants, it is often associated with willow, as it was first discovered in this species of plant. While the presence of glucose in β-D-salicin improves the physicochemical properties of the benzyl moiety, β-D-salicin itself does not have anti-inflammatory or anti-proliferative activity until it is metabolised into 2-HBA in the gastrointestinal tract and blood stream. Likewise, the majority of 2-acetoxybenzoic acid (2-ABA), or acetoxysalicylic acid also undergoes metabolic hydrolysis into 2-HBA. 2-HBA has been shown to play a role in modulating both inflammation and cancer partly through the inhibition of cyclooxygenase-2 (COX-2). It is now clear that 2-HBA most likely acts on the transcription factor NF-κB, which regulates the transcription of COX-2 thereby suppressing inflammation and cell proliferation and promoting apoptosis. Other phenolates, also exhibit anti-inflammation and anti-proliferation activities like the 4-hydroxybenzoate zinc (4-HBZn) complex, which was previously shown to preferentially inhibit COX-2 compared to 2-HBA and ASA. This review aims to collect all the available information related to β-D-salicin and other SP compounds in order to promote a new perspective of this interesting class of compounds and encourage further research into their pharmacological and clinical properties

    Discrimination of the Essential Oils Obtained from Four Apiaceae Species Using Multivariate Analysis Based on the Chemical Compositions and Their Biological Activity

    No full text
    The chemical composition of the essential oils obtained from the aerial parts of four Apiaceae species, namely Elaeosticta allioides (EA), E. polycarpa (EP), Ferula clematidifolia (FC), and Hyalolaena intermedia (HI), were determined using gas chromatography. Altogether, 100 volatile metabolites representing 78.97, 81.03, 85.78, and 84.49% of the total components present in EA, EP, FC, and HI oils, respectively, were reported. allo-Ocimene (14.55%) was the major component in FC, followed by D-limonene (9.42%). However, in EA, germacrene D (16.09%) was present in a high amount, while heptanal (36.89%) was the predominant compound in HI. The gas chromatographic data were subjected to principal component analysis (PCA) to explore the correlations between these species. Fortunately, the PCA score plot could differentiate between the species and correlate Ferula to Elaeosticta species. Additionally, the antioxidant activity was evaluated in vitro using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and the ferric reducing power (FRAP) assays. In addition, the antimicrobial activity using the agar diffusion method was assessed, and the minimum inhibitory concentrations (MICs) were determined. Furthermore, the cell viability MTT assay was performed to evaluate the cytotoxicity of the essential oils against hepatic (HepG-2) and cervical (HeLa) cancer cell lines. In the DPPH assay, FC exhibited the maximum activity against all the antioxidant assays with IC50 values of 19.8 and 23.0 μg/mL for the DPPH and ABTS assays, respectively. Ferula showed superior antimicrobial and cytotoxic activities as well. Finally, a partial least square regression model was constructed to predict the antioxidant capacity by utilizing the metabolite profiling data. The model showed excellent predictive ability by applying the ABTS assay

    HR-LC-ESI-Orbitrap-MS-Based Metabolic Profiling Coupled with Chemometrics for the Discrimination of Different Echinops spinosus Organs and Evaluation of Their Antioxidant Activity

    No full text
    This study aimed to assess and correlate the phenolic content and the antioxidant activity of the methanol extracts of the stems, roots, flowers, and leaves of Echinops spinosus L. from northeastern Algeria. Qualitative analysis was performed by high-resolution mass spectrometry (HR) LC-ESI-Orbitrap-MS and (HR) LC-ESI-Orbitrap-MS/MS). Forty-five compounds were identified in the methanol extracts; some are described for the first time in E. spinosus. Targeted phenolic compounds were quantified by HPLC-DAD and it was shown that caffeoyl quinic derivatives were the most abundant compounds. Chemometric analysis was performed using principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on the qualitative and quantitative LC data. The score plot discriminates different Echinopsis spinosus organs into three distinct clusters, with the stems and flowers allocated in the same cluster, reflecting their resemblance in their secondary metabolites. The antioxidant activities of the methanol extracts were assessed using cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant assay (FRAP), diphenyl picryl hydrazyl radical-scavenging capacity assay (DPPH• ), and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+). The root extract exhibited the highest antioxidant activity, evidenced by 3.26 and 1.61 mmol Fe2+/g dried residue for CUPRAC and FRAP, respectively, and great free radical-scavenging activities estimated by 0.53 and 0.82 mmol TEAC/g dried residue for DPPH• and ABTS•+, respectively. The methanol extract of the roots demonstrated a significant level of total phenolics (TP: 125.16 mg GAE/g dried residue) and flavonoids (TFI: 25.40 QE/g dried residue TFII: 140 CE/g dried residue). Molecular docking revealed that tricaffeoyl-altraric acid and dicaffeoyl-altraric acid exhibited the best fit within the active sites of NADPH oxidase (NO) and myeloperoxidase (MP). From ADME/TOPAKT analyses, it can be concluded that tricaffeoyl-altraric acid and dicaffeoyl-altraric acid also revealed reasonable pharmacokinetic and pharmacodynamic characteristics with a significant safety profile
    corecore