11 research outputs found

    Reduced sediment supply in a fast eroding landscape? A multi-proxy sediment budget of the upper Rhone basin, Central Alps

    Get PDF
    Alpine water and sediment supply influence the sediment budget of many important European fluvial systems such as the Rhine, Rhône and Po rivers. In the light of human induced climate change and landscape modification, it becomes increasingly important to understand the mechanisms of sediment production and supply in Alpine sediment systems. This study aims to investigate the modern sediment budget of the upper Rhône basin, one of the largest Alpine intramontane watersheds, located in the Central Alps of southwestern Switzerland. Major areas of sediment generation are fingerprinted by framework petrography, heavy mineral concentrations and bulk geochemistry. The relative contributions of the three major sources to the sediment of the trunk Rhône river are identified by compositional mixing modelling. Concentrations of the terrestrial cosmogenic nuclide 10Be measured in quartz separated from fluvial sediments provide spatially averaged denudation rates for selected tributary basins. Results from sediment fingerprinting and mixing modelling suggest that tributaries located in the North and the East of the catchment are generating most of the sediment transported by the Rhône river to its primary sedimentary sink in Lake Geneva. Despite having some of the highest denudation rates within the basin, tributaries located in the southern area of the Rhône basin are relatively underrepresented in the sediment budget of the Rhône river. These tributaries are severely affected by human activities, for example through sediment mining as well as water and sediment abstraction in large hydropower reservoirs. Together, these processes reduce the basin-wide sediment discharge by about 50%, thereby explaining most of the observed compositional pattern. In addition, there is evidence suggesting that large amounts of glaciogenic sediments are currently supplied by retreating glaciers. Glaciogenic material with its low 10Be concentrations can lead to a significant overestimation of denudation rates and thus limit the applicability of cosmogenic nuclide analysis in such glaciated settings

    Multiple cosmogenic nuclides document the stability of the East Antarctic Ice Sheet in northern Victoria Land since the Late Miocene (5-7 Ma)

    No full text
    The timing and amplitude of changes in the Antarctic ice level are relevant to understanding past climate fluctuations and ongoing changes in the global climate and sea levels. In this study, we present surface exposure ages based on in situ produced cosmogenic 10Be and 21Ne in the bedrock samples of glacially eroded relict surfaces from the Deep Freeze Range, northern Victoria Land. The proximity of this region to the East Antarctic Ice Sheet indicates that the area is sensitive to variations in inland ice volume, permitting the investigation of the behavioural relationship between the East Antarctic Ice Sheet and the alpine glacial system in northern Victoria Land. Dating erosional surfaces provides a precise chronology of northern Victoria Land paleoclimate evolution and allows us to correlate the East Antarctic Ice Sheet response to global climate events and local ice level variations. The 10Be and 21Ne concentrations from the highest peaks of the Deep Freeze Range strongly indicate that the relict landscape features were continuously exposed for 5-7 Ma. Denudation rates inferred from our data show that the erosion rate of the summits has been extremely low (<5 cm/Ma) for at least 5-7 Ma. Along with evidence of persistent climate stability (cold and arid conditions) from other sectors of the Transantarctic Mountains, our results indicate that the transition from the wet-based to the cold-based glacial regime in northern Victoria Land occurred after the creation of the polar East Antarctic Ice Sheet in the Middle Miocene

    Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600,000 years

    No full text
    The lithostratigraphic framework of Lake Van, eastern Turkey, has been systematically analysed to document the sedimentary evolution and the environmental history of the lake during the past ca 600 000 years. The lithostratigraphy and chemostratigraphy of a 219 m long drill core from Lake Van serve to separate global climate oscillations from local factors caused by tectonic and volcanic activity. An age model was established based on the climatostratigraphic alignment of chemical and lithological signatures, validated by 40Ar/39Ar ages. The drilled sequence consists of ca 76% lacustrine carbonaceous clayey silt, ca 2% fluvial deposits, ca 17% volcaniclastic deposits and 5% gaps. Six lacustrine lithotypes were separated from the fluvial and event deposits, such as volcaniclastics (ca 300 layers) and graded beds (ca 375 layers), and their depositional environments are documented. These lithotypes are: (i) graded beds frequently intercalated with varved clayey silts reflecting rising lake levels during the terminations; (ii) varved clayey silts reflecting strong seasonality and an intralake oxic–anoxic boundary, for example, lake-level highstands during interglacials/interstadials; (iii) CaCO3-rich banded sediments which are representative of a lowering of the oxic–anoxic boundary, for example, lake level decreases during glacial inceptions; (iv) CaCO3-poor banded and mottled clayey silts reflecting an oxic–anoxic boundary close to the sediment–water interface, for example, lake-level lowstands during glacials/stadials; (v) diatomaceous muds were deposited during the early beginning of the lake as a fresh water system; and (vi) fluvial sands and gravels indicating the initial flooding of the lake basin. The recurrence of lithologies (i) to (iv) follows the past five glacial/interglacial cycles. A 20 m thick disturbed unit reflects an interval of major tectonic activity in Lake Van at ca 414 ka bp. Although local environmental processes such as tectonic and volcanic activity influenced sedimentation, the lithostratigraphic pattern and organic matter content clearly reflect past global climate changes, making Lake Van an outstanding terrestrial archive of unprecedented sensitivity for the reconstruction of the regional climate over the last 600 000 years

    Preliminary results of CoQtz-N: A quartz reference material for terrestrial in-situ cosmogenic 10Be and 26Al measurements

    No full text
    There is growing interest in geochronological applications of terrestrial in situ-produced cosmogenic nuclides, with the most commonly measured being 10Be and 26Al in quartz. To extract and then separate these radionuclides from quartz and prepare them in the oxide form suitable for accelerator mass spectrometry (AMS) requires extensive and careful laboratory processing. Here we discuss the suitability of a crushed, sieved and etched, sub-aerially exposed vein quartz specimen (CoQtz-N) to act as a reference material for chemical laboratory preparation and AMS measurements. Splits of CoQtz-N were distributed to eleven target preparation laboratories. The CoQtz-N 10Be targets were then measured at seven different AMS facilities and five of the preparation laboratories had their 26Al targets measured at four different AMS facilities. We show that CoQtz-N splits are sufficiently homogeneous with regard to nuclide concentrations, that it has been cleaned of any atmospheric derived (i.e. meteoric) 10Be and that it has low concentrations of the major elements that can interfere with Be and Al extraction chemistry and AMS measurements. We derive preliminary concentrations for 10Be and 26Al in CoQtz-N as 2.53 ± 0.09 x 106 at/g and 15.6 ± 1.6 x 106 at/g, respectively, at the 95% confidence limit

    Preliminary results of CoQtz-N : a quartz reference material for terrestrial in situ cosmogenic Be-10 and Al-26 measurements

    No full text
    There is growing interest in geochronological applications of terrestrial in situ-produced cosmogenic nuclides, with the most commonly measured being Be-10 and Al-26 in quartz. To extract and then separate these radio-nuclides from quartz and prepare them in the oxide form suitable for accelerator mass spectrometry (AMS) requires extensive and careful laboratory processing. Here we discuss the suitability of a crushed, sieved and etched, sub-aerially exposed vein quartz specimen (CoQtz-N) to act as a reference material for chemical laboratory preparation and AMS measurements. Splits of CoQtz-N were distributed to eleven target preparation laboratories. The CoQtz-N Be-10 targets were then measured at seven different AMS facilities and five of the preparation laboratories had their Al-26 targets measured at four different AMS facilities. We show that CoQtz-N splits are sufficiently homogeneous with regard to nuclide concentrations, that it has been cleaned of any atmospheric derived (i.e. meteoric) Be-10 and that it has low concentrations of the major elements that can interfere with Be and Al extraction chemistry and AMS measurements. We derive preliminary concentrations for Be-10 and Al-26 in CoQtz-N as 2.53 +/- 0.09 x 10(6) at/g and 15.6 +/- 1.6 x 10(6) at/g, respectively, at the 95% confidence limit
    corecore