2,077 research outputs found
Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation
We present results of simulations for a dilute gas of inelastically colliding
particles. Collisions are modelled as a stochastic process, which on average
decreases the translational energy (cooling), but allows for fluctuations in
the transfer of energy to internal vibrations. We show that these fluctuations
are strong enough to suppress inelastic collapse. This allows us to study large
systems for long times in the truely inelastic regime. During the cooling stage
we observe complex cluster dynamics, as large clusters of particles form,
collide and merge or dissolve. Typical clusters are found to survive long
enough to establish local equilibrium within a cluster, but not among different
clusters. We extend the model to include net dissipation of energy by damping
of the internal vibrations. Inelatic collapse is avoided also in this case but
in contrast to the conservative system the translational energy decays
according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically
long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for
publication in Phys. Rev.
Autoionization of an ultracold Rydberg gas through resonant dipole coupling
We investigate a possible mechanism for the autoionization of ultracold
Rydberg gases, based on the resonant coupling of Rydberg pair states to the
ionization continuum. Unlike an atomic collision where the wave functions begin
to overlap, the mechanism considered here involves only the long-range dipole
interaction and is in principle possible in a static system. It is related to
the process of intermolecular Coulombic decay (ICD). In addition, we include
the interaction-induced motion of the atoms and the effect of multi-particle
systems in this work. We find that the probability for this ionization
mechanism can be increased in many-particle systems featuring attractive or
repulsive van der Waals interactions. However, the rates for ionization through
resonant dipole coupling are very low. It is thus unlikely that this process
contributes to the autoionization of Rydberg gases in the form presented here,
but it may still act as a trigger for secondary ionization processes. As our
picture involves only binary interactions, it remains to be investigated if
collective effects of an ensemble of atoms can significantly influence the
ionization probability. Nevertheless our calculations may serve as a starting
point for the investigation of more complex systems, such as the coupling of
many pair states proposed in [Tanner et al., PRL 100, 043002 (2008)]
Diffraction in low-energy electron scattering from DNA: bridging gas phase and solid state theory
Using high-quality gas phase electron scattering calculations and multiple
scattering theory, we attempt to gain insights on the radiation damage to DNA
induced by secondary low-energy electrons in the condensed phase, and to bridge
the existing gap with the gas phase theory and experiments. The origin of
different resonant features (arising from single molecules or diffraction) is
discussed and the calculations are compared to existing experiments in thin
films.Comment: 40 pages preprint, 12 figures, submitted to J. Chem. Phy
Recommended from our members
Scalloped channels enhance tear mixing under hydrogel contact lenses.
PurposeTear exchange under a soft contact lens is directly related to the amount of lateral and transverse lens motion. Hydrodynamic modeling suggests that channels placed on the back surface of a soft lens will reduce fluid resistance and increase transverse lens movement. This study measured the effect of posterior lens surface scalloped channels on tear exchange.MethodsTear exchange in the postlens tear film (PoLTF) was estimated using a fluorometer to measure the exponential depletion of high-MW fluorescein under the lens expressed as the time to deplete 95% of dye (T95). A total of 32 subjects wore two pairs of identical lenses except that the experimental lens had 12 scalloped channels placed radially in the midperiphery of the posterior lens surface, whereas lenses without channels served as controls.ResultsThe mean +/- standard error T95 values for the channel lenses was 28 +/- 2 minutes compared with 32 +/- 2 minutes for the control lenses (p = 0.107). There was a marginally significant difference in T95 between two lens groups in Asian eyes (p = 0.054).ConclusionPlacing scallop-shaped channels on high-H2O content soft lenses improved the postlens tear pumping in Asian eyes
Generic Modal Cut Elimination Applied to Conditional Logics
We develop a general criterion for cut elimination in sequent calculi for
propositional modal logics, which rests on absorption of cut, contraction,
weakening and inversion by the purely modal part of the rule system. Our
criterion applies also to a wide variety of logics outside the realm of normal
modal logic. We give extensive example instantiations of our framework to
various conditional logics. For these, we obtain fully internalised calculi
which are substantially simpler than those known in the literature, along with
leaner proofs of cut elimination and complexity. In one case, conditional logic
with modus ponens and conditional excluded middle, cut elimination and
complexity were explicitly stated as open in the literature
Simulation for the oblique impact of a lattice system
The oblique collision between an elastic disk and an elastic wall is
numerically studied.
We investigate the dependency of the tangential coefficient of restitution on
the incident angle of impact.
From the results of simulation, our model reproduces experimental results and
can be explained by a phenomenological theory of the oblique impact.Comment: 30 pages, 9 figures, submitted to J. Phys. Soc. Japa
Interferometry with Bose-Einstein Condensates in Microgravity
Atom interferometers covering macroscopic domains of space-time are a
spectacular manifestation of the wave nature of matter. Due to their unique
coherence properties, Bose-Einstein condensates are ideal sources for an atom
interferometer in extended free fall. In this paper we report on the
realization of an asymmetric Mach-Zehnder interferometer operated with a
Bose-Einstein condensate in microgravity. The resulting interference pattern is
similar to the one in the far-field of a double-slit and shows a linear scaling
with the time the wave packets expand. We employ delta-kick cooling in order to
enhance the signal and extend our atom interferometer. Our experiments
demonstrate the high potential of interferometers operated with quantum gases
for probing the fundamental concepts of quantum mechanics and general
relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia
Scaling, Multiscaling, and Nontrivial Exponents in Inelastic Collision Processes
We investigate velocity statistics of homogeneous inelastic gases using the
Boltzmann equation. Employing an approximate uniform collision rate, we obtain
analytic results valid in arbitrary dimension. In the freely evolving case, the
velocity distribution is characterized by an algebraic large velocity tail,
P(v,t) ~ v^{-sigma}. The exponent sigma(d,epsilon), a nontrivial root of an
integral equation, varies continuously with the spatial dimension, d, and the
dissipation coefficient, epsilon. Although the velocity distribution follows a
scaling form, its moments exhibit multiscaling asymptotic behavior.
Furthermore, the velocity autocorrelation function decays algebraically with
time, A(t)= ~ t^{-alpha}, with a non-universal dissipation-dependent
exponent alpha=1/epsilon. In the forced case, the steady state Fourier
transform is obtained via a cumulant expansion. Even in this case, velocity
correlations develop and the velocity distribution is non-Maxwellian.Comment: 10 pages, 3 figure
Coefficient of restitution for elastic disks
We calculate the coefficient of restitution, , starting from a
microscopic model of elastic disks. The theory is shown to agree with the
approach of Hertz in the quasistatic limit, but predicts inelastic collisions
for finite relative velocities of two approaching disks. The velocity
dependence of is calculated numerically for a wide range of
velocities. The coefficient of restitution furthermore depends on the elastic
constants of the material via Poisson's number. The elastic vibrations absorb
kinetic energy more effectively for materials with low values of the shear
modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
- …