84 research outputs found

    Momentum-dependent contributions to the gravitational coupling of neutrinos in a medium

    Get PDF
    When neutrinos travel through a normal matter medium, the electron neutrinos couple differently to gravity compared to the other neutrinos, due to the presence of electrons in the medium and the absence of the other charged leptons. We calculate the momentum-dependent part of the matter-induced gravitational couplings of the neutrinos under such conditions, which arise at order g2/MW4g^2/M^4_W, and determine their contribution to the neutrino dispersion relation in the presence of a gravitational potential ϕext\phi^{\mathrm{ext}}. These new contributions vanish for the muon and tau neutrinos. For electron neutrinos with momentum KK, they are of the order of the usual Wolfenstein term times the factor (K2/MW2)ϕext(K^2/M^2_W)\phi^{\mathrm{ext}}, for high energy neutrinos. In environments where the gravitational potential is substantial, such as those in the vicinity of Active Galactic Nuclei, they could be the dominant term in the neutrino dispersion relation. They must also be taken into account in the analysis of possible violations of the Equivalence Principle in the neutrino sector, in experimental settings involving high energy neutrinos traveling through a matter background.Comment: Minor corrections in the references; one reference adde

    Coherent Neutrino Interactions in a Dense Medium

    Get PDF
    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p \sim (G_F\rho)/\sqrt{2}. We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavour and in a realistic "Standard Model" with two neutrino flavours. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos.Comment: 28 pages, 6 figures, Latex; minor changes, one reference added; version to appear in Phys. Rev.

    An ansatz for spacetimes of zero gravitational mass : global monopoles and textures

    Full text link
    We propose a geometric ansatz, a restriction on Euclidean / Minkowski distance in the embedding space being propotional to distance in the embedded space, to generate spacetimes with vanishing gravitational mass (Rikuiuk=0,uiui=1R_{ik} u^i u^k = 0, u_i u^i = 1 ). It turns out that these spacetimes can represent global monopoles and textures. Thus the ansatz is a prescription to generate zero mass spacetimes that could describe topological defects, global monopoles and textures.Comment: 9 pages, LaTeX versio

    Further studies on relic neutrino asymmetry generation II: a rigorous treatment of repopulation in the adiabatic limit

    Full text link
    We derive an approximate relic neutrino asymmetry evolution equation that systematically incorporates repopulation processes from the full quantum kinetic equations (QKEs). It is shown that in the collision dominant epoch, the said equation reduces precisely to the expression obtained previously from the static/adiabatic approximation. The present treatment thus provides a rigorous justification for the seemingly incongruous assumptions of a negligible repopulation function and instantaneous repopulation sometimes employed in earlier works.Comment: RevTeX, 11 pages, no figure

    Textures and Newtonian Gravity

    Get PDF
    Newtonian theory is used to study the gravitational effects of a texture, in particular the formation of massive structures.Comment: 4 pages, 4 ps figures, REVTEX, accepted for publication in PR

    A New Dark Matter Candidate: Non-thermal Sterile Neutrinos

    Get PDF
    We propose a new and unique dark matter candidate: 100\sim 100 eV to 10\sim 10 keV sterile neutrinos produced via lepton number-driven resonant MSW (Mikheyev-Smirnov-Wolfenstein) conversion of active neutrinos. The requisite lepton number asymmetries in any of the active neutrino flavors range from 103^{-3} to 101^{-1} of the photon number - well within primordial nucleosynthesis bounds. The unique feature here is that the adiabaticity condition of the resonance strongly favors the production of lower energy sterile neutrinos. The resulting non-thermal (cold) energy spectrum can cause these sterile neutrinos to revert to non-relativistic kinematics at an early epoch, so that free-streaming lengths at or below the dwarf galaxy scale are possible. Therefore, the main problem associated with light neutrino dark matter candidates can be circumvented in our model.Comment: Latex 11 pages + 1 figur

    O(4) texture with a cosmological constant

    Full text link
    We investigate O(4) textures in a background with a positive cosmological constant. We find static solutions which co-move with the expanding background. There exists a solution in which the scalar field is regular at the horizon. This solution has a noninteger winding number smaller than one. There also exist solutions in which scalar-field derivatives are singular at the horizon. Such solutions can complete one winding within the horizon. If the winding number is larger than some critical value, static solutions including the regular one are unstable under perturbations.Comment: 25 pages, revtex, 6 eps figure

    Chaotic Amplification of Neutrino Chemical Potentials by Neutrino Oscillations in Big Bang Nucleosynthesis

    Get PDF
    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of Big Bang Nucleosynthesis. We calculate the magnitude of the amplification and show evidences of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in the Big Bang Nucleosynthesis. It is shown that with a 1\sim 1 eV \nue, the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at Big Bang Nucleosynthesis to significantly below 3.Comment: Revtex 20 pages, 7 postscript figures. Also by ftp://astro.queensu.ca/pub/shi/ . Submitted to PR

    Neutrino propagation in a random magnetic field

    Get PDF
    The active-sterile neutrino conversion probability is calculated for neutrino propagating in a medium in the presence of random magnetic field fluctuations. Necessary condition for the probability to be positive definite is obtained. Using this necessary condition we put constraint on the neutrino magnetic moment from active-sterile electron neutrino conversion in the early universe hot plasma and in supernova.Comment: 11 page
    corecore