64 research outputs found

    Right ventricular function in transcatheter mitral and tricuspid valve edge-to-edge repair

    Get PDF
    Since transcatheter edge-to-edge repair (TEER) has become a valuable therapy in the treatment of both, mitral (MR) and tricuspid regurgitation (TR), the question of optimized patient selection has gained growing importance. After years of attributing rather little attention to the right ventricle (RV) and its function in the setting of valvular heart failure, this neglect has recently changed. The present review sought to summarize anatomy and function of the RV in a clinical context and aimed at presenting the current knowledge on how the RV influences outcomes after TEER for atrioventricular regurgitation. The anatomy of the RV is determined by its unique shape, which necessitates to use three-dimensional imaging methods for detailed and comprehensive characterization. Complex parameters such as RV to pulmonary artery coupling (RVPAc) have been developed to combine information of RV function and afterload which is primary determined by the pulmonary vasculature and LV filling pressure. Beyond that, TR, which is closely related to RV function also plays an important role in the setting of TEER. While mitral valve transcatheter edge-to-edge repair (M-TEER) leads to reduction of concomitant TR in some patients, the prognostic value of TR in the setting of M-TEER remains unclear. Overall, this review summarizes the current state of knowledge of the outstanding role of RV function and associated TR in the setting of TEER and outlines the unsolved questions associated with right-sided heart failure

    Assessment of potential cardiotoxic side effects of mitoxantrone in patients with multiple sclerosis

    Get PDF
    Previous studies showed that mitoxantrone can reduce disability progression in patients with multiple sclerosis (MS). There is, however, concern that it may cause irreversible cardiomyopathy with reduced left ventricular (LV) ejection fraction (EF) and congestive heart failure. The aim of this prospective study was to investigate cardiac side effects of mitoxantrone by repetitive cardiac monitoring in MS patients. The treatment protocol called for ten courses of a combined mitoxantrone (10 mg/m(2) body surface) and methylprednisolone therapy. Before each course, a transthoracic echocardiogram was performed to determine the LV end-diastolic diameter, the end-systolic diameter and the fractional shortening; the LV-EF was calculated. Seventy-three patients participated (32 males; age 48 +/- 12 years, range 20-75 years; 25 with primary progressive, 47 with secondary progressive and 1 with relapsing-remitting MS) who received at least four courses of mitoxantrone. Three of the 73 patients were excluded during the study (2 patients discontinued therapy; 1 patient with a previous history of ischemic heart disease developed atrial fibrillation after the second course of mitoxantrone). The mean cumulative dose of mitoxantrone was 114.0 +/- 33.8 mg. The mean follow-up time was 23.4 months (range 10-57 months). So far, there has been no significant change in any of the determined parameters (end-diastolic diameter, end-systolic diameter, fractional shortening, EF) over time during all follow-up investigations. Mitoxantrone did not cause signs of congestive heart failure in any of the patients. Further cardiac monitoring is, however, needed to determine the safety of mitoxantrone after longer follow-up times and at higher cumulative doses. Copyright (C) 2005 S. Karger AG, Basel

    Mitral Valve Transcatheter Edge-to-Edge Repair:1-Year Outcomes From the MiCLASP Study

    Get PDF
    Background: Mitral transcatheter edge-to-edge repair (M-TEER) is a guideline-recommended treatment option for patients with severe symptomatic mitral regurgitation (MR). Outcomes with the PASCAL system in a post-market setting have not been established. Objectives: The authors report 30-day and 1-year outcomes from the MiCLASP (Transcatheter Repair of Mitral Regurgitation with Edwards PASCAL Transcatheter Valve Repair System) European post-market clinical follow-up study. Methods: Patients with symptomatic, clinically significant MR were prospectively enrolled. The primary safety endpoint was clinical events committee–adjudicated 30-day composite major adverse event rate and the primary effectiveness endpoint was echocardiographic core laboratory–assessed MR severity at discharge compared with baseline. Clinical, echocardiographic, functional, and quality-of-life outcomes were assessed at 1 year. Results: A total of 544 patients were enrolled (59% functional MR, 30% degenerative MR). The 30-day composite major adverse event rate was 6.8%. MR reduction was significant from baseline to discharge and sustained at 1 year with 98% of patients achieving MR ≤2+ and 82.6% MR ≤1+ (all P &lt; 0.001 vs baseline). One-year Kaplan-Meier estimate for survival was 87.3%, and freedom from heart failure hospitalization was 84.3%. Significant functional and quality-of-life improvements were observed at 1 year, including 71.6% in NYHA functional class I/II, 14.4-point increase in Kansas City Cardiomyopathy Questionnaire score, and 24.2-m improvement in 6-minute walk distance (all P &lt; 0.001 vs baseline). Conclusions: One-year outcomes of this large cohort from the MiCLASP study demonstrate continued safety and effectiveness of M-TEER with the PASCAL system in a post-market setting. Results demonstrate high survival and freedom from heart failure hospitalization, significant and sustained MR reduction, and improvements in symptoms, functional capacity, and quality of life.</p

    Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features

    Get PDF
    Background: Action myoclonus-renal failure syndrome is a hereditary form of progressive myoclonus epilepsy associated with renal failure. It is considered to be an autosomal-recessive disease related to loss-of-function mutations in SCARB2. We studied a German AMRF family, additionally showing signs of demyelinating polyneuropathy and dilated cardiomyopathy. To test the hypothesis whether isolated appearance of individual AMRF syndrome features could be related to heterozygote SCARB2 mutations, we screened for SCARB2 mutations in unrelated patients showing isolated AMRF features. Methods: In the AMRF family all exons of SCARB2 were analyzed by Sanger sequencing. The mutation screening of unrelated patients with isolated AMRF features affected by either epilepsy (n = 103, progressive myoclonus epilepsy or generalized epilepsy), demyelinating polyneuropathy (n = 103), renal failure (n = 192) or dilated cardiomyopathy (n = 85) was performed as high resolution melting curve analysis of the SCARB2 exons. Results: A novel homozygous 1 bp deletion (c.111delC) in SCARB2 was found by sequencing three affected homozygous siblings of the affected family. A heterozygous sister showed generalized seizures and reduction of nerve conduction velocity in her legs. No mutations were found in the epilepsy, renal failure or dilated cardiomyopathy samples. In the polyneuropathy sample two individuals with demyelinating disease were found to be carriers of a SCARB2 frameshift mutation (c.666delCCTTA). Conclusions: Our findings indicate that demyelinating polyneuropathy and dilated cardiomyopathy are part of the action myoclonus-renal failure syndrome. Moreover, they raise the possibility that in rare cases heterozygous SCARB2 mutations may be associated with PNP features

    Quality of oral anticoagulation among atrial fibrillation patients using VKA in Germany

    No full text

    effektives Management und Analyse großer Datenmengen von Genexpressionsexperimenten

    No full text

    Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes

    No full text
    Two kinetically and pharmacologically distinct transient outward K+ currents, referred to as Ito,f and Ito,s, have been distinguished in mouse left ventricular myocytes. Ito,f is present in all left ventricular apex cells and in most left ventricular septum cells, whereas Ito,s is identified exclusively in left ventricular septum cells.Electrophysiological recordings from ventricular myocytes isolated from animals with a targeted deletion of the Kv1.4gene (Kv1.4−/− mice) reveal that Ito,s is undetectable in cells isolated from the left ventricular septum (n= 26). Ito,f density in both apex and septum cells, in contrast, is not affected by deletion of Kv1.4.Neither the 4-AP-sensitive, slowly inactivating K+ current, IK,slow, nor the steady-state non-inactivating K+ current, ISS, is affected in Kv1.4−/− mouse left ventricular cells.In myocytes isolated from transgenic mice expressing a dominant negative Kv4.2 α subunit, Kv4.2W362F, Ito,f is eliminated in both left ventricular apex and septum cells. In addition, a slowly inactivating transient outward K+ current similar to Ito,s in wild-type septum cells is evident in myocytes isolated from left ventricular apex of Kv4.2W362F-expressing transgenics. The density of Ito,s in septum cells, however, is unaffected by Kv4.2W362F expression.Western blots of fractionated mouse ventricular membrane proteins reveal a significant increase in Kv1.4 protein level in Kv4.2W362F-expressing transgenic mice. The protein levels of other Kv α subunits, Kv1.2 and Kv2.1, in contrast, are not affected by the expression of the Kv4.2W362F transgene.The results presented here demonstrate that the molecular correlates of Ito,f and Ito,s in adult mouse ventricle are distinct. Kv1.4 underlies mouse ventricular septum Ito,s, whereas Kv α subunits of the Kv4 subfamily underlie mouse ventricular apex and septum Ito,f. The appearance of the slow transient outward K+ current in Kv4.2W362F-expressing left ventricular apex cells with properties indistinguishable from Ito,s in wild-type cells is accompanied by an increase in Kv1.4 protein expression, suggesting that the upregulation of Kv1.4 underlies the observed electrical remodeling in Kv4.2W362F-expressing transgenics
    corecore