8 research outputs found

    Seismicity and fault interaction, Southern San Jacinto Fault Zone and adjacent faults, southern California: Implications for seismic hazard

    Get PDF
    The southern San Jacinto fault zone is characterized by high seismicity and a complex fault pattern that offers an excellent setting for investigating interactions between distinct faults. This fault zone is roughly outlined by two subparallel master fault strands, the Coyote Creek and Clark-San Felipe Hills faults, that are located 2 to 10 km apart and are intersected by a series of secondary cross faults. Seismicity is intense on both master faults and secondary cross faults in the southern San Jacinto fault zone. The seismicity on the two master strands occurs primarily below 10 km; the upper 10 km of the master faults are now mostly quiescent and appear to rupture mainly or solely in large earthquakes. Our results also indicate that a considerable portion of recent background activity near the April 9, 1968, Borrego Mountain rupture zone (M_L=6.4) is located on secondary faults outside the fault zone. We name and describe the Palm Wash fault, a very active secondary structure located about 25 km northeast of Borrego Mountain that is oriented subparallel to the San Jacinto fault system, dips approximately 70° to the northeast, and accommodates right-lateral shear motion. The Vallecito Mountain cluster is another secondary feature delineated by the recent seismicity and is characterized by swarming activity prior to nearby large events on the master strand. The 1968 Borrego Mountain and the April 28, 1969, Coyote Mountain (M_L=5.8) events are examples of earthquakes with aftershocks and subevents on these secondary and master faults. Mechanisms from those earthquakes and recent seismic data for the period 1981 to 1986 are not simply restricted to strike-slip motion; dipslip motion is also indicated. Teleseismic body waves (long-period P and SH) of the 1968 and 1969 earthquakes were inverted simultaneously for source mechanism, seismic moment, rupture history, and centroid depth. The complicated waveforms of the 1968 event (M_o=1.2 × 10^(19) Nm) are interpreted in terms of two subevents; the first caused by right-lateral strike-slip motion in the mainshock along the Coyote Creek fault and the second by a rupture located about 25 km away from the master fault. Our waveform inversion of the 1969 event indicates that strike-slip motion predominated, releasing a seismic moment of 2.5 × 10^(17) Nm. Nevertheless, the right-lateral nodal plane of the focal mechanism is significantly misoriented (20°) with respect to the master fault, and hence the event is not likely to be associated with a rupture on that fault. From this and other examples in southern California, we conclude that cross faults may contribute significantly to seismic hazard and that interaction between faults has important implications for earthquake prediction

    Seismic crustal imaging using fin whale songs

    No full text
    Fin whale calls are among the strongest animal vocalizations that are detectable over great distances in the oceans. We analyze fin whale songs recorded at ocean-bottom seismometers in the northeast Pacific Ocean and show that in addition to the waterborne signal, the song recordings also contain signals reflected and refracted from crustal interfaces beneath the stations. With these data, we constrain the thickness and seismic velocity of the oceanic sediment and basaltic basement and the P-wave velocity of the gabbroic lower crust beneath and around the ocean bottom seismic stations. The abundant and globally available fin whale calls may be used to complement seismic studies in situations where conventional air-gun surveys are not available

    Location and Source Parameters of the 19 June 1994 (\u3ci\u3eM\u3csub\u3eW\u3c/sub\u3e\u3c/i\u3e = 5.0) Offshore Petrolia, California, Earthquake

    No full text
    The MW = 5.0, 19 June 1994 offshore Petrolia, California, earthquake was well recorded by nine ocean-bottom hydrophones (OBH) and seismometers (OBS), providing an opportunity to precisely locate an earthquake in the tectonically active Mendocino triple junction region. Adding the offshore data improves the azimuthal station coverage and essentially removes the epicenter\u27s sensitivity to the choice of inversion parameters and velocity models. The hypocentral parameters, assuming an oceanic upper-mantle velocity of 7.9 km/sec, are 10:39:33.2 UTC for origin time, 40.376° N latitude, 124.441° W longitude, and a depth of 18.8 km. The moment-tensor solution obtained by modeling of low-frequency regional waveforms indicates predominantly strike-slip faulting with a north-south-trending P axis, as is typical for Gorda plate earthquakes, and confirms the depth estimate from the P-wave travel-time data

    A Rapid Response Network to Record Aftershocks of the 2015 M 7.8 Gorkha Earthquake in Nepal

    No full text
    The Himalaya has experienced large damaging earthquakes over the past few centuries, most recently the damaging 25 April 2015 M 7.8 Gorkha earthquake in Nepal. Because of the continued earthquake risk presented by the continental collisional plate boundary at the Main Himalayan thrust and the high population densities in the region, collecting and processing data related to recent large earthquakes in this region is critically important for improving our understanding of the regional tectonics and earthquake hazard. Following the 2015 Gorkha earthquake, we deployed a National Science Foundation‐funded rapid‐response aftershock network known as the Nepal Array Measuring Aftershock Seismicity Trailing Earthquake network across the rupture area for 11 months beginning 7 weeks after the mainshock. The network consisted of 41 broadband and short‐period seismometers, and 14 strong‐motion sensors at 46 sites across eastern and central Nepal. The network spanned a region approximately 210 km along strike by 110 km across strike with a station spacing of 20–25 km. In this article, we report lessons learned from this deployment as well as details of the publicly accessible dataset including data recovery, data quality, and potential for future research

    Mode of Slip and Crust–mantle Interaction at Oceanic Transform Faults

    No full text
    Oceanic transform faults, connecting offset mid-ocean spreading centres, rupture quasi-periodically in earthquakes up to about magnitude M 7.0 that are often preceded by foreshocks. In addition to seismic slip, a large portion of slip takes place as aseismic creep, which likely influences initiation of large earthquakes. Although oceanic transform faults are one of the major types of plate boundaries, the exact mode of slip and interaction between the seismic and aseismic motion remains unclear. Here we present a detailed model of the mode of slip at oceanic transform faults based on data acquired from a recent temporary deployment of ocean-bottom seismometers at the Blanco Transform Fault and existing regional and teleseismic observations. In the model, the crustal part of the fault is brittle and fully seismically coupled, while the fault in the mantle, shallower than the depth of the 600 °C isotherm, creeps partially and episodically. The creep activates small asperities in the mantle that produce seismic swarms. Both mantle and the crustal zones release most of the plate-motion strain during large-magnitude earthquakes. Large earthquakes appear to be preceded by a brief episode of shallow mantle creep, accompanied by seismic swarms, which explains the observation of foreshocks and shows that mantle creep likely influences initiation of large seismic events
    corecore