14 research outputs found

    Action ability modulates time‑to‑collision judgments

    Get PDF
    Time-to-collision (TTC) underestimation has been interpreted as an adaptive response that allows observers to have more time to engage in a defensive behaviour. This bias seems, therefore, strongly linked to action preparation. There is evidence that the observer’s physical fitness modulates the underestimation effect so that people who need more time to react (i.e. those with less physical fitness) show a stronger underestimation effect. Here we investigated whether this bias is influenced by the momentary action capability of the observers. In the first experiment, participants estimated the time-to-collision of threatening or non-threatening stimuli while being mildly immobilized (with a chin rest) or while standing freely. Having reduced the possibility of movement led participants to show more underestimation of the approaching stimuli. However, this effect was not stronger for threatening relative to non-threatening stimuli. The effect of the action capability found in the first experiment could be interpreted as an expansion of peripersonal space (PPS). In the second experiment, we thus investigated the generality of this effect using an established paradigm to measure the size of peripersonal space. Participants bisected lines from different distances while in the chin rest or standing freely. The results replicated the classic left-to-right gradient in lateral spatial attention with increasing viewing distance, but no effect of immobilization was found. The manipulation of the momentary action capability of the observers influenced the participants’ performance in the TTC task but not in the line bisection task. These results are discussed in relation to the different functions of PPS

    Word-Decoding as a Function of Temporal Processing in the Visual System

    Get PDF
    This study explored the relation between visual processing and word-decoding ability in a normal reading population. Forty participants were recruited at Arizona State University. Flicker fusion thresholds were assessed with an optical chopper using the method of limits by a 1-deg diameter green (543 nm) test field. Word decoding was measured using reading-word and nonsense-word decoding tests. A non-linguistic decoding measure was obtained using a computer program that consisted of Landolt C targets randomly presented in four cardinal orientations, at 3-radial distances from a focus point, for eight compass points, in a circular pattern. Participants responded by pressing the arrow key on the keyboard that matched the direction the target was facing. The results show a strong correlation between critical flicker fusion thresholds and scores on the reading-word, nonsense-word, and non-linguistic decoding measures. The data suggests that the functional elements of the visual system involved with temporal modulation and spatial processing may affect the ease with which people read
    corecore