165 research outputs found

    Graphene formed on SiC under various environments: Comparison of Si-face and C-face

    Full text link
    The morphology of graphene on SiC {0001} surfaces formed in various environments including ultra-high vacuum, 1 atm of argon, and 10^-6 to 10^-4 Torr of disilane is studied by atomic force microscopy, low-energy electron microscopy, and Raman spectroscopy. The graphene is formed by heating the surface to 1100 - 1600 C, which causes preferential sublimation of the Si atoms. The argon atmosphere or the background of disilane decreases the sublimation rate so that a higher graphitization temperature is required, thus improving the morphology of the films. For the (0001) surface, large areas of monolayer-thick graphene are formed in this way, with the size of these areas depending on the miscut of the sample. Results on the (000-1) surface are more complex. This surface graphitizes at a lower temperature than for the (0001) surface and consequently the growth is more three-dimensional. In an atmosphere of argon the morphology becomes even worse, with the surface displaying markedly inhomogeneous nucleation, an effect attributed to unintentional oxidation of the surface during graphitization. Use of a disilane environment for the (000-1) surface is found to produce improved morphology, with relatively large areas of monolayer-thick graphene.Comment: 22 pages, 11 figures, Proceedings of STEG-2 Conference; eliminated Figs. 4 and 7 from version 1, for brevity, and added Refs. 18, 29, 30, 31 together with associated discussio

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices

    High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    Get PDF
    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing optical design optimization, and end-to-end Fresnel propagation with wavefront control (e.g. Electric Field Conjugation / Stroke Minimization). The construction of the testbed is planned to start in late Fall 2013.Comment: Proc. of the SPIE 8864, 10 pages, 3 figures, Techniques and Instrumentation for Detection of Exoplanets V

    Le marigot houët à Bobo-Dioulasso : une question de santé publique ?

    Get PDF
    Le marigot Houët, unaffluent de la rivière Kou, traverse l’intérieur de la ville de Bobo-Dioulasso du Sud au Nord. Il abrite des poissons silures qui sont considérés comme sacrés par les populations riveraines et sert aussi de source d’activités socio-économiques pour ces populations. L’objectif de notre étude est de faire un état des lieux, partant, des fonctions du marigot, afin de contribuer à la protection de son écosystème et à l’amélioration de la santé et du cadre de vie des populations riveraines. Pour notre étude, nous avons fait des prélèvements d’échantillons d’eau en sept (7) points du marigot couvrant toutes les activités  socioéconomiques. Les analyses des paramètres physicochimiques de pollution (pH, conductivité, turbidité, matières en suspension, ortho-phosphates, nitrates et nitrites, sulfates et chlorophylle « a »), de la demande chimique en oxygène (DCO), de la demande biologique en oxygène (DBO5), des paramètres microbiologiques (E. coli, coliformes fécaux, streptocoques fécaux) et des paramètres organoleptiques montrent que l’eau du Houët est sujette à une pollution domestique et industrielle.Mots clés: écosystème, pollution, silures, ea

    Review of high-contrast imaging systems for current and future ground- and space-based telescopes I. Coronagraph design methods and optical performance metrics

    Full text link
    The Optimal Optical Coronagraph (OOC) Workshop at the Lorentz Center in September 2017 in Leiden, the Netherlands gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this first installment of a series of three papers summarizing the outcomes of the OOC workshop, we present an overview of design methods and optical performance metrics developed for coronagraph instruments. The design and optimization of coronagraphs for future telescopes has progressed rapidly over the past several years in the context of space mission studies for Exo-C, WFIRST, HabEx, and LUVOIR as well as ground-based telescopes. Design tools have been developed at several institutions to optimize a variety of coronagraph mask types. We aim to give a broad overview of the approaches used, examples of their utility, and provide the optimization tools to the community. Though it is clear that the basic function of coronagraphs is to suppress starlight while maintaining light from off-axis sources, our community lacks a general set of standard performance metrics that apply to both detecting and characterizing exoplanets. The attendees of the OOC workshop agreed that it would benefit our community to clearly define quantities for comparing the performance of coronagraph designs and systems. Therefore, we also present a set of metrics that may be applied to theoretical designs, testbeds, and deployed instruments. We show how these quantities may be used to easily relate the basic properties of the optical instrument to the detection significance of the given point source in the presence of realistic noise.Comment: To appear in Proceedings of the SPIE, vol. 1069
    • …
    corecore