20 research outputs found
Temporal changes in Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) in Senegal and The Gambia.
BACKGROUND: The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein. The varying frequencies by region suggest that there could be region specific immune selection at this locus. Therefore, this study was designed to determine temporal changes in the PfRh2b deletion polymorphism in infected individuals from Thiès (Senegal) and Western Gambia (The Gambia). It was also sought to determine the selective pressures acting at this locus and whether prevalence of the deletion in isolates genotyped by a 24-SNP molecular barcode is linked to background genotype or whether there might be independent selection acting at this locus. METHODS: Infected blood samples were sourced from archives of previous studies conducted between 2007 and 2013 at SLAP clinic in Thiès and from 1984 to 2013 in Western Gambia by MRC Unit at LSHTM, The Gambia. A total of 1380 samples were screened for the dimorphic alleles of the PfRh2b using semi-nested Polymerase Chain Reaction PCR. Samples from Thiès were previously barcoded. RESULTS: In Thiès, a consistent trend of decreasing prevalence of the PfRh2b deletion over time was observed: from 66.54% in 2007 and to 38.1% in 2013. In contrast, in Western Gambia, the frequency of the deletion fluctuated over time; it increased between 1984 and 2005 from (58.04%) to (69.33%) and decreased to 47.47% in 2007. Between 2007 and 2012, the prevalence of this deletion increased significantly from 47.47 to 83.02% and finally declined significantly to 57.94% in 2013. Association between the presence of this deletion and age was found in Thiès, however, not in Western Gambia. For the majority of isolates, the PfRh2b alleles could be tracked with specific 24-SNP barcoded genotype, indicating a lack of independent selection at this locus. CONCLUSION: PfRh2b deletion was found in the two countries with varying prevalence during the study period. However, these temporal and spatial variations could be an obstacle to the implementation of this protein as a potential vaccine candidate
High resolution melting: a useful field-deployable method to measure dhfr and dhps drug resistance in both highly and lowly endemic Plasmodium populations
Background: Emergence and spread of drug resistance to every anti-malarial used to date, creates an urgent need for development of sensitive, specifc and feld-deployable molecular tools for detection and surveillance of validated drug resistance markers. Such tools would allow early detection of mutations in resistance loci. The aim of this study was to compare common population signatures and drug resistance marker frequencies between two populations with diferent levels of malaria endemicity and history of anti-malarial drug use: Tanzania and Sénégal. This was accomplished by implementing a high resolution melting assay to study molecular markers of drug resistance as compared to polymerase chain reaction–restriction fragment length polymorphism (PCR/RFLP) methodology.
Methods: Fifty blood samples were collected each from a lowly malaria endemic site (Sénégal), and a highly malaria endemic site (Tanzania) from patients presenting with uncomplicated Plasmodium falciparum malaria at clinic. Data representing the DHFR were derived using both PCR–RFLP and HRM assay; while genotyping data representing the DHPS were evaluated in Senegal and Tanzania using HRM. Msp genotyping analysis was used to characterize the multiplicity of infection in both countries.
Results: A high prevalence of samples harbouring mutant DHFR alleles was observed in both population using both genotyping techniques. HRM was better able to detect mixed alleles compared to PCR/RFLP for DHFR codon 51 in Tanzania; and only HRM was able to detect mixed infections from Senegal. A high prevalence of mutant alleles in DHFR (codons 51, 59, 108) and DHPS (codon 437) were found among samples from Sénégal while no mutations were observed at DHPS codons 540 and 581, from both countries. Overall, the frequency of samples harbouring either a single DHFR mutation (S108N) or double mutation in DHFR (C59R/S108N) was greater in Sénégal compared to Tanzania
Conclusion: Here the results demonstrate that HRM is a rapid, sensitive, and feld-deployable alternative technique to PCR–RFLP genotyping that is useful in populations harbouring more than one parasite genome (polygenomic infections). In this study, a high levels of resistance polymorphisms was observed in both dhfr and dhps, among samples from Tanzania and Sénégal. A routine monitoring by molecular markers can be a way to detect emergence of resistance involving a change in the treatment policy
Optimization of HIV Sequencing Method Using Vela Sentosa Library on Miseq Ilumina Platform
Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform. After RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR), minor modifications were applied to the Vela Sentosa kit to adapt it to the Illumina Miseq platform. Analysis of the results showed the same mutations present in the samples using both sequencing platforms. The total number of reads varied from 185,069 to 752,343 and from 642,162 to 2,074,028 in the Ion Torrent PGM platform and the Illumina Miseq platform, respectively. The average depth was 21,955 and 46,856 for Ion Torrent PGM and Illumina Miseq platforms, respectively. The cost of sequencing a run of eight samples was quite similar between the two platforms (about USD 1790 for Illumina Miseq and about USD 1833 for Ion Torrent PGM platform). We have shown for the first time that it is possible to adapt and use the Vela Sentosa kit for the Illumina Miseq platform to obtain high-quality results with a similar cost
Simultaneous SARS-CoV-2 Genome Sequencing of 384 Samples on an Illumina MiSeq Instrument through Protocol Optimization
International audienceIn the present study, we propose a high-throughput sequencing protocol using aNextera XT Library DNA kit on an Illumina MiSeq instrument. We made major modifications to this library preparation in order to multiplex 384 samples in a single Illumina flow cell. To validate our protocol, we compared the sequences obtained with the modified Illumina protocol to those obtained with the GridION Nanopore protocol. For the modified Illumina protocol, our results showed that 94.9% (357/376) of the sequences were interpretable, with a viral genome coverage between 50.5% and 99.9% and an average depth of 421×. For the GridION Nanopore protocol, 94.6% (356/376) of the sequences were interpretable, with a viral genome coverage between 7.0% and 98.6% and an average depth of 2123×. The modified Illumina protocol allows for gaining EUR 4744 and returning results of 384 samples in 53.5 h versus four times 55.5 h with the standard Illumina protocol. Our modified MiSeq protocol yields similar genome sequence data as the GridION Nanopore protocol and has the advantage of being able to handle four times more samples simultaneously and hence is much less expensive
Simultaneous SARS-CoV-2 Genome Sequencing of 384 Samples on an Illumina MiSeq Instrument through Protocol Optimization
International audienceIn the present study, we propose a high-throughput sequencing protocol using aNextera XT Library DNA kit on an Illumina MiSeq instrument. We made major modifications to this library preparation in order to multiplex 384 samples in a single Illumina flow cell. To validate our protocol, we compared the sequences obtained with the modified Illumina protocol to those obtained with the GridION Nanopore protocol. For the modified Illumina protocol, our results showed that 94.9% (357/376) of the sequences were interpretable, with a viral genome coverage between 50.5% and 99.9% and an average depth of 421×. For the GridION Nanopore protocol, 94.6% (356/376) of the sequences were interpretable, with a viral genome coverage between 7.0% and 98.6% and an average depth of 2123×. The modified Illumina protocol allows for gaining EUR 4744 and returning results of 384 samples in 53.5 h versus four times 55.5 h with the standard Illumina protocol. Our modified MiSeq protocol yields similar genome sequence data as the GridION Nanopore protocol and has the advantage of being able to handle four times more samples simultaneously and hence is much less expensive
Distribution of Plasmodium species on the island of Grande Comore on the basis of DNA extracted from rapid diagnostic tests
In the Union of Comoros, interventions for combating malaria have contributed to a spectacular decrease in the prevalence of the disease. We studied the current distribution of Plasmodium species on the island of Grande Comore using nested PCR. The rapid diagnostic tests (RDTs) currently used in the Comoros are able to identify Plasmodium falciparum but no other Plasmodium species. In this study, we tested 211 RDTs (158 positive and 53 negative). Among the 158 positive RDTs, 22 were positive for HRP2, 3 were positive only for pLDH, and 133 were positive for HRP2 and pLDH. DNA was extracted from a proximal part of the nitrocellulose membrane of RDTs. A total of 159 samples were positive by nested PCR. Of those, 156 (98.11%) were positive for P. falciparum, 2 (1.25%) were positive for P. vivaxI, and 1 (0.62%) was positive for P. malariae. None of the samples were positive for P. ovale. Our results show that P. falciparum is still the most dominant species on the island of Grande Comore, but P. vivax and P. malariae are present at a low prevalence
High Throughput SARS-CoV-2 Genome Sequencing from 384 Respiratory Samples Using the Illumina COVIDSeq Protocol
International audienceThe emergence of the Coronavirus Disease 2019 (COVID-19) pandemic has fostered the use of high-throughput techniques to sequence the entire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome and track its evolution. The present study proposes a rapid and relatively less expensive sequencing protocol for 384 samples by adapting the use of an Illumina NovaSeq library to an Illumina MiSeq flow cell instrument. The SARS-CoV-2 genome sequences obtained with Illumina NovaSeq and those obtained using MiSeq instruments were compared with the objective to validate the new, modified protocol. A total of 356 (94.6%) samples yielded interpretable sequences using the modified Illumina COVIDSeq protocol, with an average coverage of 91.6%. By comparison, 357 (94.9%) samples yielded interpretable sequences with the standard COVIDSeq protocol, with an average coverage of 95.6%. Our modified COVIDSeq protocol could save 14,155 euros per run and yield results from 384 samples in 53.5 h, compared to four times 55.5 h with the standard Illumina MiSeq protocol. The modified COVIDSeq protocol thus provides high quality results comparable to those obtained with the standard COVIDSeq protocol, four times faster, while saving money
Long-Read Sequencing and <i>De Novo</i> Genome Assembly Pipeline of Two <i>Plasmodium falciparum</i> Clones (<i>Pf</i>3D7, <i>Pf</i>W2) Using Only the PromethION Sequencer from Oxford Nanopore Technologies without Whole-Genome Amplification
Antimalarial drug resistance has become a real public health problem despite WHO measures. New sequencing technologies make it possible to investigate genomic variations associated with resistant phenotypes at the genome-wide scale. Based on the use of hemisynthetic nanopores, the PromethION technology from Oxford Nanopore Technologies can produce long-read sequences, in contrast to previous short-read technologies used as the gold standard to sequence Plasmodium. Two clones of P. falciparum (Pf3D7 and PfW2) were sequenced in long-read using the PromethION sequencer from Oxford Nanopore Technologies without genomic amplification. This made it possible to create a processing analysis pipeline for human Plasmodium with ONT Fastq only. De novo assembly revealed N50 lengths of 18,488 kb and 17,502 kb for the Pf3D7 and PfW2, respectively. The genome size was estimated at 23,235,407 base pairs for the Pf3D7 clone and 21,712,038 base pairs for the PfW2 clone. The average genome coverage depth was estimated at 787X and 653X for the Pf3D7 and PfW2 clones, respectively. This study proposes an assembly processing pipeline for the human Plasmodium genome using software adapted to large ONT data and the high AT percentage of Plasmodium. This search provides all the parameters which were optimized for use with the software selected in the pipeline
Genetic diversity of Plasmodium falciparum in Grande Comore Island
BackgroundDespite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grande Comore compared to neighbouring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2) and single nucleotide polymorphism (SNP) genetic markers.MethodsA total of 162 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM).ResultsTwo allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded interpretable results. Out of these isolates, 36 (85%) were genetically unique and 6 (15%) grouped into two clusters. The genetic diversity of P. falciparum calculated from msp1 and msp2 genes and SNPs was 0.82 and 0.61, respectively.ConclusionIn summary, a large genetic diversity of P. falciparum was observed in Grande Comore. This may favour persistence of malaria and might be one of the reasons for the high malaria transmission compared to neighbouring islands. Further surveillance of P. falciparum isolates, mainly through environmental management and vector control, is warranted until complete elimination is attained