28 research outputs found
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
A new measure of longitudinal connectivity for stream networks
Habitat connectivity is a central factor in shaping aquatic biological communities, but few tools exist to describe and quantify this attribute at a network scale in riverine systems. Here, we develop a new index to quantify longitudinal connectivity of river networks based on the expected probability of an organism being able to move freely between two random points of the network. We apply this index to two fish life histories and evaluate the effects of the number, passability, and placement of barriers on river network connectivity through the use of simulated dendritic ecological networks. We then extend the index to a real world dendritic river system in Newfoundland, Canada. Our results indicate that connectivity in river systems, as represented by our index, is most impacted by the first few barriers added to the system. This is in contrast to terrestrial systems, which are more resilient to low levels of connectivity. The results show a curvilinear relationship between barrier passability and structural connectivity. This suggests that an incremental improvement in passability would result in a greater improvement to river network connectivity for more permeable barriers than for less permeable barriers. Our analysis of the index in simulated and real river networks also showed that barrier placement played an important role in connectivity. Not surprisingly, barriers located near the river mouth have the greatest impact on fish with diadromous life histories while those located near the center of the river network have the most impact on fish with potadromous life histories. The proposed index is conceptually simple and sufficiently flexible to deal with variations in river structure and biological communities. The index will enable researchers to account for connectivity in habitat studies and will also allow resource managers to characterize watersheds, assess cumulative impacts of multiple barriers and determine priorities for restoration
Investigating Risky Choices Over Losses Using Experimental Data
We conduct a battery of experiments in which agents make choices from several pairs of all-loss-lotteries. Using these choices, we estimate a representation of individual preferences over lotteries. We find statistically and economically significant departures from expected utility maximization for many subjects. We also estimate a preference representation based on summary statistics for behavior in the population of subjects, and again find departures from expected utility maximization. Our results suggest that public policies based on an expected utility approach could significantly underestimate preferences and willingness to pay for risk reduction. Copyright Springer Science + Business Media, Inc. 2005risky decision-making, loss domain, experiments,
Cache la poudre : the romance of a tenderfoot in the days of Custer /
References: Howes, U.S.IANA, no. M.935.Mode of access: Internet
Marijuana craving in the brain
Craving is one of the primary behavioral components of drug addiction, and cue-elicited craving is an especially powerful form of this construct. While cue-elicited craving and its underlying neurobiological mechanisms have been extensively studied with respect to alcohol and other drugs of abuse, the same cannot be said for marijuana. Cue-elicited craving for other drugs of abuse is associated with increased activity in a number of brain areas, particularly the reward pathway. This study used functional magnetic resonance imaging (fMRI) to examine cue-elicited craving for marijuana. Thirty-eight regular marijuana users abstained from use for 72 h and were presented with tactile marijuana-related and neutral cues while undergoing a fMRI scan. Several structures in the reward pathway, including the ventral tegmental area, thalamus, anterior cingulate, insula, and amygdala, demonstrated greater blood oxygen level dependent (BOLD) activation in response to the marijuana cue as compared with the neutral cue. These regions underlie motivated behavior and the attribution of incentive salience. Activation of the orbitofrontal cortex and nucleus accumbens was also positively correlated with problems related to marijuana use, such that greater BOLD activation was associated with greater number of items on a marijuana problem scale. Thus, cue-elicited craving for marijuana activates the reward neurocircuitry associated with the neuropathology of addiction, and the magnitude of activation of these structures is associated with severity of cannabis-related problems. These findings may inform the development of treatment strategies for cannabis dependence
Criteria Air Pollution and Marginalized Populations: Environmental Inequity in Metropolitan Phoenix, Arizona
Our objective is to examine spatial relationships between modeled criteria air pollutants (i.e., nitrous oxides, carbon monoxide, and ozone) and sociodemographics in metropolitan Phoenix, Arizona. Modeled air pollution offers environmental justice researchers a new and robust data source for representing chronic environmental hazards. Copyright (c) 2007 Southwestern Social Science Association.