31 research outputs found

    Feeding Our Immune System: Impact on Metabolism

    Get PDF
    Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose) impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs) of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy

    Interleukin-7, a New Cytokine Targeting the Mouse Hypothalamic Arcuate Nucleus: Role in Body Weight and Food Intake Regulation

    Get PDF
    Body weight is controlled through peripheral (white adipose tissue) and central (mainly hypothalamus) mechanisms. We have recently obtained evidence that overexpression of interleukin (IL)-7, a critical cytokine involved in lymphopoiesis, can protect against the development of diet-induced obesity in mice. Here we assessed whether IL-7 mediated its effects by modulating hypothalamic function. Acute subcutaneous injection of IL-7 prevented monosodium glutamate-induced obesity, this being correlated with partial protection against cell death in the hypothalamic arcuate nucleus (ARC). Moreover, we showed that IL-7 activated hypothalamic areas involved in regulation of feeding behavior, as indicated by induction of the activation marker c-Fos in neural cells located in the ventromedial part of the ARC and by inhibition of food intake after fasting. Both chains of the IL-7 receptor (IL-7Rα and γc) were expressed in the ARC and IL-7 injection induced STAT-3 phosphorylation in this area. Finally, we established that IL-7 modulated the expression of neuropeptides that tune food intake, with a stimulatory effect on the expression of pro-opiomelanocortin and an inhibitory effect on agouti-related peptide expression in accordance with IL-7 promoting anorectic effects. These results suggest that the immunomodulatory cytokine IL-7 plays an important and unappreciated role in hypothalamic body weight regulation

    Interleukin-7 Regulates Adipose Tissue Mass and Insulin Sensitivity in High-Fat Diet-Fed Mice through Lymphocyte-Dependent and Independent Mechanisms

    Get PDF
    Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions

    Peptide-binding assays and HLA II transgenic Abeta degrees mice are consistent and complementary tools for identifying HLA II-restricted peptides.

    No full text
    The identification of MHC class II-restricted peptides has become a priority for the development of peptide-based prophylactic and therapeutic vaccines. The aim of this study was to assess the correlations between peptide-binding assays on purified HLA II molecules and immunization of human HLA II transgenic mice deficient in murine class II molecules (Abeta degrees ). We used as models two MHC class II-restricted peptides, one derived from the HIV Nef regulatory protein (Nef (56-68)) and the other from the Schistosoma mansoni 28-kDa glutathione-S-transferase (Sm28GST (190-211)). High correlations were found between the two approaches, which showed that the Nef (56-68) and Sm28GST (190-211) peptides may represent promiscuous ligands for HLA-DQ and for HLA-DR molecules, respectively. We suggest a rational method based on the combination of peptide-binding assays and HLA II transgenic mice experiments as consistent and complementary tools for selecting T helper epitopes.Journal Articleinfo:eu-repo/semantics/publishe

    Monocyte intrinsic NOD2 signalling inhibits pathogenic macrophage differentiation and its loss in inflammatory macrophages improves intestinal inflammation

    No full text
    Objective It is believed that intestinal recruitment of monocytes from Crohn’s Disease (CD) patients who carry NOD2 risk alleles may repeatedly give rise to recruitment of pathogenic macrophages. We investigated an alternative possibility that NOD2 may rather inhibit their differentiation from intravasating monocytes.Design The monocyte fate decision was examined by using germ-free mice, mixed bone marrow chimeras and a culture system yielding macrophages and monocyte-derived dendritic cells (mo-DCs). We next asked whether Nod2 in either monocytes or tissue macrophages have distinct resolving properties in colitis.Results Despite a similar abundance of monocytes, the intestinal frequency of mo-DCs from Nod2-deficient mice was lowered independently of the changes in the gut microbiota that are caused by Nod2 deficiency. Similarly, the pool of mo-DCs was poorly reconstituted with mobilized bone marrow Nod2-deficient cells. The use of pharmacological inhibitors revealed that activated NOD2 at an early stage of development dominantly inhibits mTOR-mediated macrophage differentiation in a TNFalpha-dependent manner. These observations were supported by the identification of a TNFalpha-dependent response to MDP that is specifically lost in CD14-expressing blood cells bearing the frameshift mutation in NOD2. Accordingly, loss of NOD2 in monocytes lowers glycolytic reserve, CD115 expression and pro-resolving features. Dietary intake of aryl hydrocarbon receptor (AHR) agonists that promotes mo-DCs generation improves colitis in Nod2-deficient mice to the same extent as what is observed upon macrophage ablation of Nod2.Conclusion NOD2 negatively regulates a macrophage developmental program through a feed-forward loop that could be exploited for overcoming resistance to anti-TNF therapy in CD

    IL-7 improves neural cell-survival.

    No full text
    <p>(<b>A</b>) Bromodeoxyuridine (BrdU) treatment experimental procedure. (<b>B</b>) BrdU positive cells in the ARC of PBS- (□) or IL-7- (▪) treated mice. Animals were sacrificed one day after BrdU treatment (post-natal day 8 (P8)) for neural cell proliferation analysis (n = 5 per group), or 29 days after BrdU treatment (P36) for neural cell survival analysis (n = 5 per group). Data were represented as mean ± SEM of BrdU-positive cells within the ARC per animal and per slice. *<i>p</i><0.05.</p
    corecore