24 research outputs found
An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries
Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al
Perception and cognition of cues Used in synchronous Brain–computer interfaces Modify electroencephalographic Patterns of control Tasks
A motor imagery (MI)-based brain–computer interface (BCI) is a system that enables humans to interact with their environment by translating their brain signals into control commands for a target device. In particular, synchronous BCI systems make use of cues to trigger the motor activity of interest. So far, it has been shown that electroencephalographic (EEG) patterns before and after cue onset can reveal the user cognitive state and enhance the discrimination of MI-related control tasks. However, there has been no detailed investigation of the nature of those EEG patterns. We, therefore, propose to study the cue effects on MI-related control tasks by selecting EEG patterns that best discriminate such control tasks, and analyzing where those patterns are coming from. The study was carried out using two methods: standard and all-embracing. The standard method was based on sources (recording sites, frequency bands, and time windows), where the modulation of EEG signals due to motor activity is typically detected. The all-embracing method included a wider variety of sources, where not only motor activity is reflected. The findings of this study showed that the classification accuracy (CA) of MI-related control tasks did not depend on the type of cue in use. However, EEG patterns that best differentiated those control tasks emerged from sources well defined by the perception and cognition of the cue in use. An implication of this study is the possibility of obtaining different control commands that could be detected with the same accuracy. Since different cues trigger control tasks that yield similar CAs, and those control tasks produce EEG patterns differentiated by the cue nature, this leads to accelerate the brain–computer communication by having a wider variety of detectable control commands. This is an important issue for Neuroergonomics research because neural activity could not only be used to monitor the human mental state as is typically done, but this activity might be also employed to control the system of interest