43 research outputs found

    Increased blood glucose is related to disturbed cerebrovascular pressure reactivity after traumatic brain injury.

    Get PDF
    BACKGROUND: Increased blood glucose and impaired pressure reactivity (PRx) after traumatic brain injury (TBI) are both known to correlate with unfavorable patient outcome. However, the relationship between these two variables is unknown. METHODS: To test the hypothesis that increased blood glucose leads to increased PRx, we retrospectively analyzed data from 86 traumatic brain injured patients admitted to the Neurocritical Care Unit. Data analyzed included arterial glucose concentration, intracranial pressure (ICP), cerebral perfusion pressure (CPP) and end-tidal CO2. PRx was calculated as the moving correlation coefficient between averaged (10 seconds) arterial blood pressure and ICP. One arterial glucose concentration and one time-aligned PRx value were obtained for each patient, during each day until the fifth day after ictus. RESULTS: Mean arterial glucose concentrations during the first 5 days since ictus were positively correlated with mean PRx (Pearson correlation coefficient = 0.25, p = 0.02). The correlation was strongest on the first day after injury (Pearson correlation coefficient = 0.47, p = 0.008). CONCLUSION: Our preliminary findings indicate that increased blood glucose may impair cerebrovascular reactivity, potentially contributing to a mechanistic link between increased blood glucose and poorer outcome after TBI.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s12028-014-0042-

    Trans-cerebral HCO3- and PCO2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans

    Get PDF
    This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO(3)(−)]) and carbon dioxide tension (PCO(2)) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO(2) (PaCO(2)) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO(3)(−)] increased by 0.15 ± 0.05 mmol ⋅ l(−1) per mmHg elevation in PaCO(2) across a wide physiological range (35 to 60 mmHg PaCO(2); P < 0.001). The narrowing of the venous-arterial [HCO(3)(−)] and PCO(2) differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO(3)(−)] exchange (CBF × venous-arterial [HCO(3)(−)] difference) was reduced indicating a shift from net release toward net uptake of [HCO(3)(−)] (P = 0.004). Arterial [HCO(3)(−)] was reduced by −0.48 ± 0.15 mmol ⋅ l(−1) per nmol ⋅ l(−1) increase in arterial [H(+)] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO(3)(−)] difference and arterial [H(+)] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO(3)(−)] exchange was unaltered throughout exercise when indexed against arterial [H(+)] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO(3)(−)] – during acute respiratory/exercise-induced metabolic acidosis, respectively – differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO(3)(−)] exchange)

    Hypernatremia and intracranial pressure: more questions than answers

    No full text

    Monitoring and modifying brain oxygenation in patients at risk of hypoxic ischaemic brain injury after cardiac arrest

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2021. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2021 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .Medicine, Faculty ofNon UBCCritical Care Medicine, Division ofMedicine, Department ofReviewedFacult

    Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model

    No full text
    Abstract Hypoxic ischemic brain injury (HIBI) after cardiac arrest (CA) is a leading cause of mortality and long-term neurologic disability in survivors. The pathophysiology of HIBI encompasses a heterogeneous cascade that culminates in secondary brain injury and neuronal cell death. This begins with primary injury to the brain caused by the immediate cessation of cerebral blood flow following CA. Thereafter, the secondary injury of HIBI takes place in the hours and days following the initial CA and reperfusion. Among factors that may be implicated in this secondary injury include reperfusion injury, microcirculatory dysfunction, impaired cerebral autoregulation, hypoxemia, hyperoxia, hyperthermia, fluctuations in arterial carbon dioxide, and concomitant anemia. Clarifying the underlying pathophysiology of HIBI is imperative and has been the focus of considerable research to identify therapeutic targets. Most notably, targeted temperature management has been studied rigorously in preventing secondary injury after HIBI and is associated with improved outcome compared with hyperthermia. Recent advances point to important roles of anemia, carbon dioxide perturbations, hypoxemia, hyperoxia, and cerebral edema as contributing to secondary injury after HIBI and adverse outcomes. Furthermore, breakthroughs in the individualization of perfusion targets for patients with HIBI using cerebral autoregulation monitoring represent an attractive area of future work with therapeutic implications. We provide an in-depth review of the pathophysiology of HIBI to critically evaluate current approaches for the early treatment of HIBI secondary to CA. Potential therapeutic targets and future research directions are summarized.Health and Social Development, Faculty of (Okanagan)Medicine, Faculty ofNon UBCCritical Care Medicine, Division ofHealth and Exercise Sciences, School of (Okanagan)Medicine, Department ofReviewedFacult
    corecore