773 research outputs found

    Genetic Environmental Effects on Silage Productivity of Corn (Zea mays L.)

    Get PDF
    A series of 5 experiments were conducted on silage corn production in Hawaii, with assessment of a variety of genetic and environmental factors. Two corn hybrids were planted bimonthly for 2 years using 6 different population densities, ranging from 50,000 to 200,000 plants/ha. The optimum population density for silage yield was 167,000 plants/ha, but for grain was much lower. Optimum populations for grain under unfavorable seasons (winter) were lower than those in favorable seasons (spring and summer). Significant population x season interaction for grain and stover yields would recommend lower population density in winter planting for silage production in Hawaii. Increasing population resulted in reduction of yield components and plant characters such as height, stem diameter, and leaf area. Grain and stover yields showed seasonal cyclic variations throughout the years, with higher yields in spring and summer, and lower yields in fall and winter seasons. Plant characters and yield components showed similar seasonal variations to those of grain and stover yields. Minimum temperature and solar radiation were important determinant factors for corn production in Hawaii. Brown midrib-3 mutant corn, low in lignin content and high in digestibility, was compared to normal counterpart corn to determine yield response and their components. Significant grain and stover yield reductions were observed bm3, with average reductions of 20% for grain yield and 17% for stover yield. Several hybrids showed small reduction in total yield (6-7 %), indicating possible use of bm3 for high quality corn silage. Mean squares of general combining ability (GCA) and specific combining ability (SCA) were highly significant for grain and stover yields. The GCA/SCA ratio for stover yield was much higher than that of grain yield, indicating that the GCA effect was more important than SCA in stover yields. The GCA/SCA ratio for filled ear length and number of kernels were much higher than those for grain yield. This result indicated that the GCA effect was more significant for yield components than for grain yield. Corn genotypes were evaluated for yields and their characters, under normal daylength (average 12 hours) and extended daylength of additional 4 hours of light in Hawaii. Tasseling and silking were delayed under extended light for all genotypes. Plant characters, including plant height, ear height, number of stem nodes, LAI, and stem diameter increased significantly under extended light. The magnitude of increase for those characters depended on the sensitivity to photoperiod. Significant grain yield reduction was observed, but stover yield increased significantly under extended light. The interval from tasseling to silking was much longer under extended light, creating poor condition for pollination. No difference of total dry matter yield was observed between normal and extended daylength conditions. The increase in stover yield was offset by the decrease in grain yield. Tropical inbreds from wide genetic sources were evaluated for silage yield and plant characters with Hawaiian tester inbreds. Among the 217 hybrids studies, about 5 % of those were superior for silage yields to the Hawaiian superior check hybrid. CIMMYT, H632, and ICA inbreds revealed superiority for silage production. These inbreds also had high GCA effects for grain yield. In general, the superior hybrids selected were later in flowering and maturity. The late maturing hybrids were 10-15 days longer in maturity than early maturing hybrids. The superior hybrids had an advantage for silage production because of much higher yield even in the longer growing period. A 7-entry diallel set based on the factorial experiment was evaluated for silage yield and genetic characters. In general, late maturing hybrids showed higher grain and silage production. Stover yield was correlated with most of the plant characters and rust rating was negatively correlated to grain and stover yields. GCA and SCA were significant for both grain and stover yields. The GCA/SCA ratio indicated that additive genes were more important in the genetic variation. GCA x season and SCA x season interactions were significant for grain and stover yields, indicating that gene effects were not stable for grain and stover yield under dissimilar environment

    Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer

    Get PDF
    We report the optical pumping of one-dimensional distributed feedback (DFB) conjugated polymer devices using a uniaxially aligned liquid crystalline polymer, poly(9,9-dioctylfluorene). We can independently select the alignment direction (via a rubbed polyimide layer) and the DFB structure (via nanoimprinting). In comparison with unaligned film, we show that lasing threshold is substantially reduced when absorption is parallel to the aligned direction (similar to 20.0 mu J cm(-2) pulse(-1)). This is mainly due to the higher absorption coefficient estimated in the table by calculating the exciton densities at each threshold value. We also report the control of lasing wavelength through independent selection of alignment direction and DFB orientation, which is achieved through the control of the effective refractive index of waveguide (n(eff)).open171

    Pauli paramagnetism of an ideal Fermi gas

    Full text link
    We show how to use trapped ultracold atoms to measure the magnetic susceptibility of a two-component Fermi gas. The method is illustrated for a non-interacting gas of 6^6Li, using the tunability of interactions around a wide Feshbach resonances. The susceptibility versus effective magnetic field is directly obtained from the inhomogeneous density profile of the trapped atomic cloud. The wings of the cloud realize the high field limit where the polarization approaches 100%, which is not accessible for an electron gas.Comment: 5 pages, 4 figure

    Optofluidic ring resonator laser with an edible liquid laser gain medium

    Get PDF
    We demonstrate a biocompatible optofluidic laser with an edible liquid laser gain medium, made of riboflavin dissolved in water. The proposed laser platform is based on a pulled-glass-capillary optofluidic ring resonator (OFRR) with a high Q-factor, resulting in a lasing threshold comparable to that of conventional organic dye lasers that are mostly harmful, despite the relatively low quantum yield of the riboflavin. The proposed biocompatible laser can be realized by not only a capillary OFRR, but also by an optical-fiber-based OFRR that offers improved mechanical stability, and is promising technology for application to in vivo bio-sensing

    Highly circularly polarized white light using a combination of white polymer light-emitting diode and wideband cholesteric liquid crystal reflector

    Get PDF
    We present a simple and intriguing device that generates highly circularly polarized white light. It comprises white polymer light-emitting diodes (WPLEDs) attached to a wideband cholesteric liquid crystal (CLC) reflector with a wide photonic bandgap (PBG) covering the visible range. The degree of circular polarization realized is very high over the visible range. The wide PBG was realized by introducing a gradient in pitch of the cholesteric helix by controlling the twisting power within the CLC medium. WPLEDs fabricated using a ternary (red, green, and blue) fluorescent polymer blend with the same moiety showed a low turn-on voltage, high brightness, high efficiency, and good color stability.open0

    Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics

    Get PDF
    Substantial progress in flexible or stretchable electronics over the past decade has extensively impacted various technologies such as wearable devices, displays and automotive electronics for smart cars. An important challenge is the reliability of these deformable devices under thermal stress. Different coefficients of thermal expansion (CTE) between plastic substrates and the device components, which include multiple inorganic layers of metals or ceramics, induce thermal stress in the devices during fabrication processes or long-term operations with repetitions of thermal cyclic loading-unloading, leading to device failure and reliability degradation. Here, we report an unconventional approach to form photo-patternable, transparent cellulose nanofiber (CNF) hybrid films as flexible and stretchable substrates to improve device reliability using simultaneous electrospinning and spraying. The electrospun polymeric backbones and sprayed CNF fillers enable the resulting hybrid structure to be photolithographically patternable as a negative photoresist and thermally and mechanically stable, presenting outstanding optical transparency and low CTE. We also formed stretchable origami substrates using the CNF hybrid that are composed of rigid support fixtures and elastomeric joints, exploiting the photo-patternability. A demonstration of transparent organic light-emitting diodes and touchscreen panels on the hybrid film suggests its potential for use in next-generation electronics.ope
    corecore