111 research outputs found

    Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function

    Get PDF
    Left ventricular diastolic dysfunction is a major cause of heart failure and carries a poor prognosis. Assessment of left ventricular diastolic function however remains challenging for both echocardiography and conventional phase contrast cardiac magnetic resonance. Amongst other limitations, both are restricted to measuring velocity in a single direction or plane, thereby compromising their ability to capture complex diastolic hemodynamics in health and disease. Time-resolved three-dimensional phase contrast cardiac magnetic resonance imaging with three-directional velocity encoding known as ‘4D flow CMR’ is an emerging technology which allows retrospective measurement of velocity and by extension flow at any point in the acquired 3D data volume. With 4D flow CMR, complex aspects of blood flow and ventricular function can be studied throughout the cardiac cycle. 4D flow CMR can facilitate the visualization of functional blood flow components and flow vortices as well as the quantification of novel hemodynamic and functional parameters such as kinetic energy, relative pressure, energy loss and vorticity. In this review, we examine key concepts and novel markers of diastolic function obtained by flow pattern analysis using 4D flow CMR. We consolidate the existing evidence base to highlight the strengths and limitations of 4D flow CMR techniques in the surveillance and diagnosis of left ventricular diastolic dysfunction

    Role of cardiac energetics in aortic stenosis disease progression: identifying the high-risk metabolic phenotype

    Get PDF
    Background: Severe aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and cardiac metabolic alterations with evidence of steatosis and impaired myocardial energetics. Despite this common phenotype, there is an unexplained and wide individual heterogeneity in the degree of hypertrophy and progression to myocardial fibrosis and heart failure. We sought to determine whether the cardiac metabolic state may underpin this variability. Methods: We recruited 74 asymptomatic participants with AS and 13 healthy volunteers. Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to adenosine triphosphate ratio. Myocardial lipid content was determined using proton spectroscopy. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging. Results: Phosphocreatine/adenosine triphosphate was reduced early and significantly across the LV wall thickness quartiles (Q2, 1.50 [1.21–1.71] versus Q1, 1.64 [1.53–1.94]) with a progressive decline with increasing disease severity (Q4, 1.48 [1.18–1.70]; P=0.02). Myocardial triglyceride content levels were overall higher in all the quartiles with a significant increase seen across the AV pressure gradient quartiles (Q2, 1.36 [0.86–1.98] versus Q1, 1.03 [0.81–1.56]; P=0.034). While all AS groups had evidence of subclinical LV dysfunction with impaired strain parameters, impaired systolic longitudinal strain was related to the degree of energetic impairment (r=0.219; P=0.03). Phosphocreatine/adenosine triphosphate was not only an independent predictor of LV wall thickness (r=−0.20; P=0.04) but also strongly associated with myocardial fibrosis (r=−0.24; P=0.03), suggesting that metabolic changes play a role in disease progression. The metabolic and functional parameters showed comparable results when graded by clinical severity of AS. Conclusions: A gradient of myocardial energetic deficit and steatosis exists across the spectrum of hypertrophied AS hearts, and these metabolic changes precede irreversible LV remodeling and subclinical dysfunction. As such, cardiac metabolism may play an important and potentially causal role in disease progression

    Left ventricular T1-mapping in diastole versus systole in patients with mitral regurgitation

    Get PDF
    Cardiovascular magnetic resonance T1-mapping enables myocardial tissue characterisation, and is capable of quantifying both intracellular and extracellular volume. T1-mapping is conventionally performed in diastole, however, we hypothesised that systolic readout would reduce variability due to a reduction in myocardial blood volume. This study investigated whether T1-mapping in systole alters T1 values compared to diastole and whether reproducibility alters in atrial fibrillation compared to sinus rhythm. We prospectively identified 103 consecutive patients recruited to the Mitral FINDER study who had T1 mapping in systole and diastole. These patients had moderate or severe mitral regurgitation and a high incidence of ventricular dilatation and atrial fibrillation. T1, ECV and goodness-of-fit (R2) values of the T1 times were calculated offline using Circle cvi42 and in house-developed software. Systolic T1 mapping was associated with fewer myocardial segments being affected by artefact compared to diastolic T1 mapping [217/2472 (9%) vs 515/2472 (21%)]. Mean native T1 values were not significantly different when measured in systole and diastole (985 ± 26 ms vs 988 ± 29 respectively; p = 0.061) and mean post-contrast values showed similar good agreement (462 ± 32 ms vs 459 ± 33 respectively, p = 0.052). No clinically significant differences in ECV, native T1 and post-contrast T1 were identified between diastolic and systolic T1 maps in males versus females, or in patients with permanent atrial fibrillation versus sinus rhythm. A statistically significant improvement in R2 value was observed with systolic over diastolic T1 mapping in all analysed maps (n = 411) (96.2 ± 1.4% vs 96.0 ± 1.4%; p &lt; 0.001) and in subgroup analyses [Sinus rhythm: 96.1 ± 1.4 vs 96.3 ± 1.4 (n = 327); p &lt; 0.001. AF: 95.5 ± 1.3 vs 95.9 ± 1.2 (n = 80); p &lt; 0.001] [Males: 95.8 ± 1.4 vs 96.1 ± 1.3 (n = 264); p &lt; 0.001; Females: 96.2 ± 1.3 vs 96.4 ± 1.4 (n = 143); p = 0.009]. In conclusion, myocardial T1 mapping is associated with similar T1 and ECV values in systole and diastole. Furthermore, systolic acquisition is less prone to gating artefact in arrhythmia.</p

    Left Ventricular Flow Analysis: Novel Imaging Biomarkers and Predictors of Exercise Capacity in Heart Failure.

    Get PDF
    Background: Cardiac remodeling, after a myocardial insult, often causes progression to heart failure. The relationship between alterations in left ventricular blood flow, including kinetic energy (KE), and remodeling is uncertain. We hypothesized that increasing derangements in left ventricular blood flow would relate to (1) conventional cardiac remodeling markers, (2) increased levels of biochemical remodeling markers, (3) altered cardiac energetics, and (4) worsening patient symptoms and functional capacity. Methods: Thirty-four dilated cardiomyopathy patients, 30 ischemic cardiomyopathy patients, and 36 controls underwent magnetic resonance including 4-dimensional flow, BNP (brain-type natriuretic peptide) measurement, functional capacity assessment (6-minute walk test), and symptom quantification. A subgroup of dilated cardiomyopathy and control subjects underwent cardiac energetic assessment. Left ventricular flow was separated into 4 components: direct flow, retained inflow, delayed ejection flow, and residual volume. Average KE throughout the cardiac cycle was calculated. Results: Patients had reduced direct flow proportion and direct-flow average KE compared with controls (P<0.0001). The residual volume proportion and residual volume average KE were increased in patients (P<0.0001). Importantly, in a multiple linear regression model to predict the patient’s 6-minute walk test, the independent predictors were age (β=−0.3015; P=0.019) and direct-flow average KE (β=0.280, P=0.035; R2 model, 0.466, P=0.002). In contrast, neither ejection fraction nor left ventricular volumes were independently predictive. Conclusions: This study demonstrates an independent predictive relationship between the direct-flow average KE and a prognostic measure of functional capacity. Intracardiac 4-dimensional flow parameters are novel biomarkers in heart failure and may provide additive value in monitoring new therapies and predicting prognosis.This study was supported by the British Heart Foundation [grant number FS/12/14/29354 to VMS]; Medical Research Council (ATH); Oxford British Heart Foundation Centre of Research Excellence (ATH and SN); Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society (098436/Z/12/B to CTR); National Institute for Health Research Oxford Biomedical Research Centre Programme (SN and SGM); Swedish Research Council (PD and TE); the Swedish Heart and Lung Foundation [grant number 20140398 to CJC]. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 310612 to TE
    corecore