2,430 research outputs found

    Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy

    Get PDF
    Twisted graphene layers produce a moir\'e pattern (MP) structure with a predetermined wavelength for given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theory (DFT) due to the large supercell. Here, within elasticity theory we define the MP structure as the minimum energy configuration, thereby leaving the height amplitude as the only unknown parameter. The latter is determined from DFT calculations for AB and AA stacked bilayer graphene in order to eliminate all fitting parameters. Excellent agreement with scanning tunneling microscopy (STM) results across multiple substrates is reported as function of twist angle.Comment: to appear in Phys. Rev.

    Polarization selection rules for inter-Landau level transitions in epitaxial graphene revealed by infrared optical Hall effect

    Full text link
    We report on polarization selection rules of inter-Landau level transitions using reflection-type optical Hall effect measurements from 600 to 4000 cm-1 on epitaxial graphene grown by thermal decomposition of silicon carbide. We observe symmetric and anti-symmetric signatures in our data due to polarization preserving and polarization mixing inter-Landau level transitions, respectively. From field-dependent measurements we identify that transitions in decoupled graphene mono-layers are governed by polarization mixing selection rules, whereas transitions in coupled graphene mono-layers are governed by polarization preserving selection rules. The selection rules may find explanation by different coupling mechanisms of inter-Landau level transitions with free charge carrier magneto-optic plasma oscillations

    Graphene formation on SiC substrates

    Full text link
    Graphene layers were created on both C and Si faces of semi-insulating, on-axis, 4H- and 6H-SiC substrates. The process was performed under high vacuum (<10-4 mbar) in a commercial chemical vapor deposition SiC reactor. A method for H2 etching the on-axis sub-strates was developed to produce surface steps with heights of 0.5 nm on the Si-face and 1.0 to 1.5 nm on the C-face for each polytype. A process was developed to form graphene on the substrates immediately after H2 etching and Raman spectroscopy of these samples confirmed the formation of graphene. The morphology of the graphene is described. For both faces, the underlying substrate morphology was significantly modified during graphene formation; sur-face steps were up to 15 nm high and the uniform step morphology was sometimes lost. Mo-bilities and sheet carrier concentrations derived from Hall Effect measurements on large area (16 mm square) and small area (2 and 10 um square) samples are presented and shown to compare favorably to recent reports.Comment: European Conference on Silicon Carbide and Related Materials 2008 (ECSCRM '08), 4 pages, 4 figure

    The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of A Dense Embedded Cluster in the Serpens-Aquila Rift

    Get PDF
    We report the discovery of a nearby, embedded cluster of young stellar objects, associated filamentary infrared dark cloud, and 4.5 mu m shock emission knots from outflows detected in Spitzer IRAC mid-infrared imaging of the Serpens-Aquila Rift obtained as part of the Spitzer Gould Belt Legacy Survey. We also present radial velocity measurements of the region from molecular line observations obtained with the Submillimeter Array (SMA) that suggest the cluster is comoving with the Serpens Main embedded cluster to the north. We therefore assign it 3 degrees the same distance, 260 pc. The core of the new cluster, which we call Serpens South, is composed of an unusually large fraction of protostars (77%) at high mean surface density (> 430 pc(-2)) and short median nearest neighbor spacing (3700 AU). We perform basic cluster structure characterization using nearest neighbor surface density mapping of the YSOs and compare our findings to other known clusters with equivalent analyses available in the literature.Astronom

    The Ionization Fraction in Dense Molecular Gas II: Massive Cores

    Full text link
    We present an observational and theoretical study of the ionization fraction in several massive cores located in regions that are currently forming stellar clusters. Maps of the emission from the J = 1-> O transitions of C18O, DCO+, N2H+, and H13CO+, as well as the J = 2 -> 1 and J = 3 -> 2 transitions of CS, were obtained for each core. Core densities are determined via a large velocity gradient analysis with values typically 10^5 cm^-3. With the use of observations to constrain variables in the chemical calculations we derive electron fractions for our overall sample of 5 cores directly associated with star formation and 2 apparently starless cores. The electron abundances are found to lie within a small range, -6.9 < log10(x_e) < -7.3, and are consistent with previous work. We find no difference in the amount of ionization fraction between cores with and without associated star formation activity, nor is any difference found in electron abundances between the edge and center of the emission region. Thus our models are in agreement with the standard picture of cosmic rays as the primary source of ionization for molecular ions. With the addition of previously determined electron abundances for low mass cores, and even more massive cores associated with O and B clusters, we systematically examine the ionization fraction as a function of star formation activity. This analysis demonstrates that the most massive sources stand out as having the lowest electron abundances (x_e < 10^-8).Comment: 35 pages (8 figures), using aaspp4.sty, to be published in Astrophysical Journa
    corecore