20,638 research outputs found
Noise transmission through plates into an enclosure
An analytical model is presented to predict noise transmission through elastic plates into a hard-walled rectangular cavity at low frequencies, that is, frequencies up through the first few plate and cavity natural frequencies. One or several nonoverlapping and independently vibrating panels are considered. The effects on noise transmission of different external-pressure excitations, plate boundary conditions, fluid parameters, structural parameters, and geometrical parameters were investigated
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A
Testing was conducted using the basic RC2-75 engine, to which several modifications were incorporated which were designed to reduce the hydrocarbon emissions and reduce the specific fuel consumption. The modifications included close-in surface gap spark plugs, increased compression ratio rotors, and provisions for utilizing either side or peripheral intake ports, or a combination of the two if required. The proposed EPA emissions requirements were met using the normal peripheral porting. The specific fuel economy demonstrated for the modified RC2-75 was 283 g/kW-hr at 75% power and 101 brake mean effective pressure (BMEP) and 272.5 g/kW-hr at 75% power and 111 BMEP. The latter would result from rating the engine for takeoff at 285 hp and 5500 rpm, instead of 6000 rpm
Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish
In zebrafish, many nerve pathways in both the CNS and periphery are pioneered by a small and relatively simple set of ‘primary’ neurons that arise in the early embryo. We now have used monoclonal antibodies to show that, as they develop, primary neurons of several functional classes express on their surfaces the L2/HNK-1 tetrasaccharide that is associated with a variety of cell surface adhesion molecules. We have studied the early labeling patterns of these neurons, as well as some non-neural cells, and found that the time of onset and intensity of immunolabeling vary specifically according to cell type. The first neuronal expression is by Rohon-Beard and trigeminal ganglion neurons, both of which are primary sensory neurons that mediate touch sensitivity. These cells express the epitope very strongly on their growth cones and axons, permitting study of their development unobscured by labeling in other cells. Both types initiate axogenesis at the same early time, and appear to be the first neurons in the embryo to do so. Their peripheral neurites display similar branching patterns and have similar distinctive growth cone morphologies. Their central axons grow at the same rate along the same longitudinal fiber pathway, but in opposite directions, and where they meet they appear to fasciculate with one another. The similarities suggest that Rohon-Beard and trigeminal ganglion neurons, despite their different positions, share a common program of early development. Immunolabeling is also specifically present on a region of the brain surface where the newly arriving trigeminal sensory axons will enter the brain. Further, the trigeminal expression of the antigen persists in growth cones during the time that they contact an individually identified central target neuron, the Mauthner cell, which also expresses the epitope. These findings provide descriptive evidence for possible roles of L2/HNK-1 immunoreactive molecules in axonal growth and synaptogenesis
Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier
In order to describe heavy-ion fusion reactions around the Coulomb barrier
with an actinide target nucleus, we propose a model which combines the
coupled-channels approach and a fluctuation-dissipation model for dynamical
calculations. This model takes into account couplings to the collective states
of the interacting nuclei in the penetration of the Coulomb barrier and the
subsequent dynamical evolution of a nuclear shape from the contact
configuration. In the fluctuation-dissipation model with a Langevin equation,
the effect of nuclear orientation at the initial impact on the prolately
deformed target nucleus is considered. Fusion-fission, quasi-fission and deep
quasi-fission are separated as different Langevin trajectories on the potential
energy surface. Using this model, we analyze the experimental data for the mass
distribution of fission fragments (MDFF) in the reactions of
S+U and Si+U at several incident energies
around the Coulomb barrier. We find that the time scale in the quasi-fission as
well as the deformation of fission fragments at the scission point are
different between the Si+U and S+U systems,
causing different mass asymmetries of the quasi-fission.Comment: 11 figure
Pupillometry, a bioengineering overview
The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented
The outer crust of non-accreting cold neutron stars
The properties of the outer crust of non-accreting cold neutron stars are
studied by using modern nuclear data and theoretical mass tables updating in
particular the classic work of Baym, Pethick and Sutherland. Experimental data
from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and
a thorough comparison of many modern theoretical nuclear models, relativistic
and non-relativistic ones, is performed for the first time. In addition, the
influences of pairing and deformation are investigated. State-of-the-art
theoretical nuclear mass tables are compared in order to check their
differences concerning the neutron dripline, magic neutron numbers, the
equation of state, and the sequence of neutron-rich nuclei up to the dripline
in the outer crust of non-accreting cold neutron stars.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.
Superlinear Increase of Photocurrent due to Stimulated Scattering into a Polariton Condensate
We show that when a monopolar current is passed through an n-i-n structure,
superlinear photocurrent response occurs when there is a polariton condensate.
This is in sharp contrast to the previously observed behavior for a standard
semiconductor laser. Theoretical modeling shows that this is due to a
stimulated exciton-exciton scattering process in which one exciton relaxes into
the condensate, while another one dissociates into an electron-hole pair.Comment: 17 pages with 10 figure
A Case Study of On-the-Fly Wide-Field Radio Imaging Applied to the Gravitational-wave Event GW 151226
We apply a newly-developed On-the-Fly mosaicing technique on the NSF's Karl
G. Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive
search for an afterglow from the Advanced LIGO binary black hole merger event
GW 151226. In three epochs between 1.5 and 6 months post-merger we observed a
100 sq. deg region, with more than 80% of the survey region having a RMS
sensitivity of better than 150 uJy/beam, in the northern hemisphere having a
merger containment probability of 10%. The data were processed in
near-real-time, and analyzed to search for transients and variables. No
transients were found but we have demonstrated the ability to conduct blind
searches in a time-frequency phase space where the predicted afterglow signals
are strongest. If the gravitational wave event is contained within our survey
region, the upper limit on any late-time radio afterglow from the merger event
at an assumed mean distance of 440 Mpc is about 1e29 erg/s/Hz. Approximately
1.5% of the radio sources in the field showed variability at a level of 30%,
and can be attributed to normal activity from active galactic nuclei. The low
rate of false positives in the radio sky suggests that wide-field imaging
searches at a few Gigahertz can be an efficient and competitive search
strategy. We discuss our search method in the context of the recent afterglow
detection from GW 170817 and radio follow-up in future gravitational wave
observing runs.Comment: 11 pages. 6 figures. 1 table. Accepted for publication in ApJ Letter
- …