729 research outputs found

    A rigorous evaluation of crossover and mutation in genetic programming

    Get PDF
    The role of crossover and mutation in Genetic Programming (GP) has been the subject of much debate since the emergence of the field. In this paper, we contribute new empirical evidence to this argument using a rigorous and principled experimental method applied to six problems common in the GP literature. The approach tunes the algorithm parameters to enable a fair and objective comparison of two different GP algorithms, the first using a combination of crossover and reproduction, and secondly using a combination of mutation and reproduction. We find that crossover does not significantly outperform mutation on most of the problems examined. In addition, we demonstrate that the use of a straightforward Design of Experiments methodology is effective at tuning GP algorithm parameters

    Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking

    Get PDF
    Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that {beta}-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 {my}m away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization

    Thermally assisted magnetization reversal in the presence of a spin-transfer torque

    Full text link
    We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation for the magnetization dynamics in the presence of spin transfer torques. Since the spin transfer torque can pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill-defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In the limit of high energy barriers, the law of thermal agitation is derived. We find that the N\'{e}el-Brown relaxation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent of the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support our theory. Our results agree with existing experimental data.Comment: 5 figure

    Magnetization dynamics with a spin-transfer torque

    Full text link
    The magnetization reversal and dynamics of a spin valve pillar, whose lateral size is 64Ă—\times64 nm2^2, are studied by using micromagnetic simulation in the presence of spin transfer torque. Spin torques display both characteristics of magnetic damping (or anti-damping) and of an effective magnetic field. For a steady-state current, both M-I and M-H hysteresis loops show unique features, including multiple jumps, unusual plateaus and precessional states. These states originate from the competition between the energy dissipation due to Gilbert damping and the energy accumulation due to the spin torque supplied by the spin current. The magnetic energy oscillates as a function of time even for a steady-state current. For a pulsed current, the minimum width and amplitude of the spin torque for achieving current-driven magnetization reversal are quantitatively determined. The spin torque also shows very interesting thermal activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure

    String Cosmology: A Review

    Get PDF
    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.Comment: 55 pages. v2: references adde

    Late-Time Tails of Wave Propagation in Higher Dimensional Spacetimes

    Full text link
    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power-law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t^[-(2l+D-2)] at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd, it does not depend on the presence of a black hole in the spacetime. Indeed this tails is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t^[-(2l+3D-8)], and this time there is no contribution from the flat background. This power-law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, the t^[-(2l+3)] behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late time behaviour of any field if the large extra dimensions are large enough.Comment: 6 pages, 3 figures, RevTeX4. Version to appear in Rapid Communications of Physical Review

    The Modern Design of Experiments for Configuration Aerodynamics: A Case Study

    Get PDF
    The effects of slowly varying and persisting covariate effects on the accuracy and precision of experimental result is reviewed, as is the rationale for run-order randomization as a quality assurance tactic employed in the Modern Design of Experiments (MDOE) to defend against such effects. Considerable analytical complexity is introduced by restrictions on randomization in configuration aerodynamics tests because they involve hard-to-change configuration variables that cannot be randomized conveniently. Tradeoffs are examined between quality and productivity associated with varying degrees of rigor in accounting for such randomization restrictions. Certain characteristics of a configuration aerodynamics test are considered that may justify a relaxed accounting for randomization restrictions to achieve a significant reduction in analytical complexity with a comparably negligible adverse impact on the validity of the experimental results
    • …
    corecore