Un1ver51ty

Qf Glasgow

White, D.R.and Poulding, S. (2009) A rigorous evaluation of crossover
and mutation in genetic programming. In: Vanneschi, L., Gustafson, S.,
Moraglio, A., De Falco, I. and Ebner, M. (eds.) 12th European
Conference, EuroGP 2009 Tibingen, Germany, April 15-17, 2009
Proceedings. Series: Lecture Notes in Computer Science, 5481. Springer
Verlag, Germany, pp. 220-231.

http://eprints.gla.ac.uk/55371/

Deposited on: 16 November 2011

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/55371/

A Rigorous Evaluation of Crossover and
Mutation in Genetic Programming

David R. White and Simon Poulding

{drw,smp}@cs.york.ac.uk
Dept. of Computer Science, University of York,
Heslington, York, YO10 5DD, UK

Abstract. The role of crossover and mutation in Genetic Programming
(GP) has been the subject of much debate since the emergence of the
field. In this paper, we contribute new empirical evidence to this argu-
ment using a rigorous and principled experimental method applied to
six problems common in the GP literature. The approach tunes the al-
gorithm parameters to enable a fair and objective comparison of two
different GP algorithms, the first using a combination of crossover and
reproduction, and secondly using a combination of mutation and repro-
duction. We find that crossover does not significantly outperform mu-
tation on most of the problems examined. In addition, we demonstrate
that the use of a straightforward Design of Experiments methodology is
effective at tuning GP algorithm parameters.

1 Introduction

The role of crossover and mutation in Genetic Programming (GP) has long been
the subject of debate in the GP community, particularly whether GP’s use of
crossover results in a more effective algorithm than approaches that do not, such
as local search. Several papers comparing the effectiveness of the two variation
operators have been published in the past [1-3]. In this paper, we carry out a
principled empirical study, comparing the exclusive use of mutation against the
exclusive use of crossover. Thus, we do not aim to provide the optimal combina-
tion of the two, but hope that our experiments may provide some illuminating
evidence to this debate. The application of rigorous experimental method allows
us to make a fair comparison between the two, by applying an equivalent amount
of effort to the tuning of parameters for both cases across six example problems
that are standard in the literature.

It has been stated that both the evolutionary computation and wider heuris-
tic search communities are sometimes less rigorous in their experimental method
and analysis than their counterparts in other experimental disciplines, such as
the natural sciences. Effective and efficient Design of Experiments (DoE) [4]
methods that are applied as a matter of course in those other disciplines have
yet to be fully adopted, and often inferior trial-and-error methods are used in-
stead. In this paper, we will demonstrate the ease of application of DoE methods
in the hope that they may be more widely employed in subsequent research. The

adoption of a DoE methodology enables us to make quantified statements about
our findings with a strong degree of confidence.

Johnson [5] commented on the weaknesses of experimental method in pre-
vious research and outlined a series of practical guidelines to practitioners in
heuristic search. We hope to follow Johnson’s excellent guidance, and in particu-
lar we are promoting the repeatability of our experiments by adopting as simple
a methodology as possible, by selecting tools widely used within the community,
and by providing both raw results data, code and scripts via the web [6].

2 Previous Work

2.1 Crossover and Mutation

Luke and Spector [1] published a comparison of crossover and mutation over
four problems, which was subsequently revised [2] with some improved statistical
analysis. The original paper examined both an exclusive choice between crossover
and mutation, and secondly a mixed approach or “blend”, whereas the second
paper examined only the exclusive choice. We hope to add to their results. Their
work across the two papers included the equivalent of 36,000 runs of a typical
GP system, and one way we can improve upon their work is by taking advantage
of Moore’s Law: our results are based on millions of runs. We have also increased
the number of parameters evaluated from 4 to 10.

Luke and Spector found little difference in performance between exclusive
use of crossover or mutation, and often there was no statistically significant
difference. In both papers they note that the situation is more complex than it
may appear, and that their results are dependent on parameter settings.

Angeline [3] compared crossover to macromutation, arguing that the crossover
operator may in fact function as a mutation operator of sorts. He borrowed
the phrase headless chicken crossover from the Genetic Algorithms community,
where crossover is made with a randomly generated tree rather than a second
parent. Angeline compared standard crossover to two variants of headless chicken
crossover and found that there was little difference in performance across 3 prob-
lems, whilst maintaining fixed settings for the remaining parameters.

Koza includes a section on a simple comparison of genetic programming with
and without crossover, using mutation in both cases, in his first book [7]. Very
little detail of the comparison is provided and it does not appear to employ
statistical methods, but within the instance studied, Koza found crossover was
a strongly beneficial addition to the algorithm.

These prior comparisons only considered the importance of parameter set-
tings on the comparison to a limited extent and thus their conclusions cannot
be generalised. Whilst ¢-tests were employed, more sophisticated statistical tech-
niques were not used. Our work addresses this issue, through systematic param-
eter tuning and large-scale experimentation along with extensive analysis.

2.2 Previous Applications of Rigorous Experimental Method

Feldt et al. [8] investigated the significance of various GP parameters within
classification problems by applying fractional factorial designs. A large number
of parameters, 17, are considered, many of them specific to the example problems.
Their work applied the initial stages of DoE screening methods, to determine
which parameters are significant.

Coy et. al [9] also applied two-level factorial designs to optimise parame-
ters, although their work does not involve Genetic Programming. Having run
a fractional factorial on a small number of problems, they hillclimb a linear
approximation of the response surface to optimise the parameters, and finally
average the parameter settings across problems. As described below, our pilot
study suggests that such response surface techniques may not be consistently ef-
fective for GP algorithm parameters. Generalising from one problem to another
is also difficult, and for this reason we apply optimisation separately to each indi-
vidual problem. Interestingly, they also conclude their paper with a comparison
between algorithms, though whether this comparison involves parameter tuning
for the other algorithms involved is unclear.

3 Hypotheses

The empirical work is driven by the two hypotheses below. Three GP algorithms
are used for the empirical investigation described in this paper, and for clarity
within the hypotheses we denote these as follows:

A. a GP algorithm that employs two genetic operators: crossover and reproduc-
tion. We will tune the parameters of the algorithm, and identify the tuned
algorithm using the notation Aj.

A, a GP algorithm that employs two genetic operators: mutation and repro-
duction. We identify the tuned algorithm as A},.

A4 a GP algorithm that employs two genetic operators: crossover and repro-
duction. This algorithm is not tuned during our investigation; instead the
algorithm parameters are set to values that are established within the GP
community as ‘defaults’.

Hypothesis 1: Crossover and Mutation There is a significant difference
between the performance of algorithms A% and A7, for a given problem instance.

In other words, after tuning each algorithm, the performance of the algorithm
employing crossover as a genetic operator is significantly different from the per-
formance of algorithm employing mutation. We use this hypothesis to determine
the relative effectiveness of crossover and mutation as genetic operators for each
of the problems.

Hypothesis 2: Parameter Tuning There is a significant difference between
the performance of A’ and A, for a given problem instance.

In other words, tuning the crossover algorithm results in a significantly dif-
ferent performance from the algorithm using default values. (The ‘default’ values
for a mutation-only GP algorithm are not clearly defined, so we do not make
an equivalent comparison for A,,.) We use this hypothesis to demonstrate the
effectiveness of the methodology we apply to tune the algorithms.

4 Experimental Design

4.1 Problem Instances

In order to test our hypotheses, it was necessary to select a set of problems.
We chose a problem set from the examples distributed with version 16 of the
popular ECJ system [10], listed in Table 1. This set includes at least one problem
from each category of the examples provided with ECJ. One regression problem
includes Ephemeral Random Constants (ERCs), one does not. Note that we have
not considered examples using Automatically Defined Functions (ADFs).

Given this selection of problem instances, it was a natural choice to use ECJ
as the system to run the algorithm trials described in this paper.

Table 1. ECJ Problems Selected as Problem Instances

Number|Problem
1 Symbolic Regression of & + 2® + 2? 4+ = with no ERCs
Symbolic Regression of % — 223 4+ & with ERCs
Two Box Problem
Santa Fe Ant Trail
Boolean 11 Multiplexer

S O W N

Lawnmower

4.2 Response Measure

In comparing the performance of different parameter settings we must select a
performance measure. In this work we have used the fitness of the best individual
in the final population as our response measure. For some of the problems, ECJ
will terminate a run as soon as an “ideal” individual is found.

4.3 Parameter Selection

Using ECJ’s parameter file system, we selected 9 independent parameters for
algorithm A, and 10 for A,,, as listed in Table 2. A,, has an extra parameter,
z10, controlling the expression grown to replace a selected subtree.

Additional ECJ parameters are derived from the set of 10 independent pa-
rameters and are listed in the bottom half of Table 2. For example, the probabil-
ity of reproduction is derived as 1 —xg where xg is the probability of crossover or
mutation. Similarly, we maintain the product of the population size and number
of generations at (approximately) 52500 to ensure the same number of fitness
evaluations are made by all algorithms.

Note that tournament selection was chosen as the selection mechanism, hence
roulette-wheel, rank selection and other alternatives were not considered. Koza’s
ramped half-and-half method was used for initialisation and its parameters were
treated as experimental parameters, that is, factors to be examined within our
experimentation. The justification for these decisions was simply that the number
of possible alternatives was in effect infinite.

ECJ provides a series of default parameter values that are the same for all
problems. These defaults are based on the work of Koza [7,11], and no attempt
has been made by the ECJ team to optimise these parameters for the individual
problems concerned. These defaults are used to provide the parameter values for
the default algorithm, Ay, and are listed in the right-hand column of Table 2.

Table 2. Algorithm Parameters and their Ranges

Description Range Low|Range High|ECJ Default
x1 |Grow prob. initialisation 0.1 0.5 0.5
r2 |[Max. depth initial tree 4 10 6
x3 |[Min. depth initial tree 0.34 x x2 0.75 X x2 2
x4 |Prob. of selecting root 0 0.5 0
x5 |Prob. of selecting terminal 0.1 x (1 —24)]0.5 % (1 —z4) 0.1
re¢ |Max. depth child tree 5 19 17
x7 |Population size 30 1500 1024
xg |Prob. of crossover/mutation 0.1 1.0 0.9
To |Tournament selection size 2 9 7
T10|Min. depth mutated subtree 3 9 5
Dependent Parameters
xr11|Max. depth mutated subtree x10 5
x12|Max. number of generations 52500/x7 51
z13|Prob. of selecting non-terminal 1— (x4 + x5) 0.9
x14|Prob. of reproduction 1—xsg 0.1

4.4 Strategy

The performance of the crossover and mutation algorithms, A, and A,,, depends
on the values of the 10 independent parameters identified above. At one choice of
parameter values, A, may perform better than A,,, and the reverse may be true
at a different parameter setting. In this way, an arbitrary choice of parameter
settings could be a source of significant bias when comparing the two algorithms.

Therefore, a fair and principled comparison of the two algorithms must es-
tablish parameter values in an objective and unbiased manner. A sensible choice
(which is also consistent with how the algorithms would be used in practice) is
to identify, separately for each algorithm, parameter values at which it operates
at its optimum performance and then compare these tuned algorithms.

Locating the absolute optimal parameter values for stochastic algorithms is
often difficult and can require extensive computing resources for experimenta-
tion, especially when there are a large number of parameters as in this case. A
compromise is to locate approzimations to the optimal parameter values using
a simpler method that requires computing power of a more realistic scale. If an
equivalent amount of effort—in terms of both the computing power used and
the data analysis performed—is spent in applying this method to each of the
algorithms, it is reasonable to expect the approximations to be similarly close
to the absolute optimum for each algorithm, and so the comparisons to be fair.
This is the approach we take for the experimental work in this paper.

The experimental strategy therefore consists of two phases:

Parameter Tuning Identify approximations to the optimal parameter values
for each algorithm. We tune the algorithms separately for each problem
instance, rather than assess a single set of parameter values that give the
best performance when averaged over all problem instances.

Performance Comparison At the optimal parameter values located in the
first phase, compare the performance of both the crossover and mutation
algorithms in order to test Hypothesis 1. In addition, we compare the per-
formance of the crossover algorithm at its optimal parameter values with the
algorithm using default ECJ parameters to test Hypothesis 2.

These phases are described in the next two sections. Each section contains a
description of the experimental method for that phase and analysis of the results.

5 Parameter Tuning

5.1 Experimental Method

A possible method of tuning the algorithm parameters is to use Response Surface
Methodology (RSM) [12,4]. This is an iterative process that starts in a small
region of parameter space and uses experimental results to move the region of
interest towards the optimal parameters. The traditional application of RSM
is the improvement of industrial processes and it has recently been applied to
optimising the parameters of wireless protocols [13].

We performed a pilot study that tested RSM, as well as a more straightfor-
ward application of Design of Experiments methodology, as techniques for tuning
the parameters of the algorithms A, and A,,,. Contrary to our expectations, the
DoE method located parameter values that were closer to the optimum than
those found using RSM. (We speculate that the relatively high dimensionality
of the parameter space presents a challenge to RSM, but more rigorous exper-
imentation is necessary before we are able to comment on the relative efficacy

of each method.) In addition, the RSM required more, potentially subjective,
choices from the experimenter than did DoE. We therefore proceeded with the
DoE method for the parameter tuning phase described in this section.

Our DoE methodology approximates the performance, y, of the algorithm to
the parameter settings, x;, using a second-order linear model:

y:ﬂo+2ﬂzxz+ZZﬂz]zJ+Zﬁ”$12+6 (]_)

i g>i i

This model is almost certainly a simplification of the actual relationship be-
tween the algorithm’s performance and its parameters, especially over the large
ranges we allow for the parameter values. However, if we keep in mind the goal
of locating approximations to the optimal parameter values using an objective
methodology, this simplification may be appropriate. The results of the pilot
study provided evidence that this is indeed the case.

The S coefficients in the equation define the relationship between algorithm
parameters and performance. The objective of the experiments described in this
section is to estimate the value of these coefficients in order to fit the model to
the actual performance of the algorithm.

The algorithm performance is also affected by the sequence of random num-
bers that control operations such as initialisation, crossover, mutation, repro-
duction and selection. We account for this affect using the ‘noise’ term, e: it
quantifies the difference between the predicted mean performance of the algo-
rithm and the observed performance of a single run of the algorithm with a
specific random number seed.

5.2 Experimental Design

In order to provide data that is used to estimate the 8 coefficients in the model,
a series of experimental trials are run at different parameter values. The choice
of these parameter values is specified by an experimental design. For second-
order linear models such as equation (1), a Central Composite Design (CCD)
is often chosen since good coefficient estimates can be obtained with relatively
few experimental trials [4]. A further pilot study compared the use of CCD
with a three-level full factorial design (FD), and suggested the latter to be more
effective at locating good approximations to the optimum algorithm parameters,
even when a large number of the repetitions of the CCD were used to reduce the
effect of the stochastic noise, i.e. the changes in algorithm performance caused
by the random seeds. (We speculate that CCD is an efficient and effective design
when a second-order linear model is a good approximation of the actual response,
but when the model is a necessary simplification as it is here, a three-level FD
is more effective since it explores many more points in the parameter space.)
The three-level FD considers three values of each parameter: the points at
each end of the range shown in Table 2 and a point in the middle of the range.
The ranges are sufficiently large to incorporate most reasonable values for each
parameter, but exclude extreme parameter values (e.g. a crossover probability of

0, or a tournament selection size of 1) that might significantly alter the nature
of the algorithm and therefore the shape of the response surface in such regions.
The full design consists of all possible combinations of the three values for each
parameter, resulting in 3° = 19,683 design points for A, and 3! = 59,049
design points for A,,.

There is redundancy inherent in the three-level factorial design: it contains
many more design points than is necessary to fit a second-order model. This
allowed us to use a relatively small number of repetitions—two, using a difference
random seed in each case—to accommodate the stochastic noise and therefore
improve the accuracy of model fitting.

5.3 Analysis

As described in Section 4.2, our response measure is the fitness of the best
individual in the final population. We use the ‘adjusted fitness’ value returned
by ECJ for this measure since it has convenient mathematical properties. It is
a value in the range (0,1], with a value of 1 indicating the ideal solution was
found by the algorithm.

The model of equation (1) is fitted to the response values using standard
linear regression, which estimates the values of the 3 coefficients.

As a first step in this process, a Box-Cox transform [4] is applied to the
adjusted fitness, y:

) {Q} if \#£0 @

" \n(y) ifA=0

The value of A is chosen from the range [—2, 2] so that the fit of the transformed
responses, ¢, to the second-order linear model of equation (1), is maximised. The
analysis of the linear model makes particular assumptions, particularly as to the
distribution of the random variable €, and this transform enables the responses
to satisfy the assumptions as closely as possible.

To locate the optimal parameter values for the algorithm, we apply a de-
terministic optimisation technique, quadratic programming, to the fitted model.
This technique locates the parameter values that give the largest response from
the model, and therefore the best performance from the algorithm. We constrain
potential parameter values to the ranges listed in Table 2.

5.4 Results

The tuned parameter values are shown in Table 3 for algorithm A, and Table 4
for algorithm A,,.

6 Performance Comparison

6.1 Experimental Method

The second phase of experimentation considers the tuned algorithms, A} and
A* . and, in addition, the default algorithm Ay. To compare algorithm perfor-

m?

Table 3. Parameter Values for Tuned Crossover Algorithm, A}

Description Prob 1|Prob 2|Prob 3|Prob 4|Prob 5/Prob 6
x1|Grow prob. initialisation 0.9 0.1 0.1 0.9 0.9/ 0.3973
r2|Max. depth initial tree 4 8 8 4 4 4
x3|Min. depth initial tree 3 5 4 2 1 3
z4|Prob. of selecting root 0 0 0 0 0 0
xs|Prob. of selecting terminal| 0.2665| 0.4723| 0.4612| 0.4299 0.5 0.1
ze|Max. depth child tree 17 19 19 17 16 19
z7|Population size 1221 1221 1094 1500 1500 143
xg|Prob. of crossover 1 1 1| 0.9861 1| 0.9541
z9|Tournament selection size 2 9 9 9 9 7

Table 4. Parameter Values for Tuned Mutation Algorithm, A},

Description Prob 1|Prob 2(Prob 3|Prob 4(Prob 5/Prob 6
x1 |Grow prob. initialisation 0.8364 0.9 0.1 0.9 0.1 0.9
r2 |[Max. depth initial tree 4 7 8 4 9 4
xs |Max. depth initial tree 2 3 3 2 5 1
x4 |Prob. of selecting root 0 0 0 0 0 0
x5 |Prob. of selecting terminal 0.5 0.5 0.5 0.5 0.5 0.5
x¢ |Max. depth child tree 18 18 19 14 19 19
x7 |Population size 1458 1193 1010 1419 808 30
zs |Prob. of mutation 0.9386| 0.816 1| 0.8488| 0.8133 1
z9 |Tournament selection size 9 9 9 8 9 9
z10|Min. depth mutated subtree 3 3 9 3 9 9

mance, each combination of algorithm (A%, A% and A,;) and problem (1 to 6)
was run 500 times and the response measured. Each algorithm run used a dif-
ferent random seed. The sample size of 500 is an estimate of an appropriate
number of trials to demonstrate a statistically significant difference between the
algorithms in the presence of stochastic noise.

6.2 Analysis

The hypotheses of Section 3 relate to a significant difference between the per-
formance of the algorithms. Our analysis considers two criteria of significance:

Statistical Significance A statistical analysis of the difference in observed al-
gorithm performance must provide evidence that the observed difference is
unlikely to be a chance result.

Scientific Significance The difference in observed algorithm performance—
the effect size—must be sufficiently large in comparison to the stochastic
noise (arising from the choice of random seeds) to be scientifically important.

Given a sufficiently large sample size it would be possible to demonstrate a
statistically significant difference in algorithm performance, even if the observed

difference were extremely small. Such a result would unlikely be scientifically
important, and our second criterion guards against this situation. In particular,
it moderates against the possibility that our choice of a sample size of 500 for
the comparisons is too large.

We apply mon-parametric statistical tests to analyse both types of signif-
icance. These types of tests make few, if any, assumptions about the distri-
bution from which the observed responses are sampled. Equivalent parametric
tests, such as a t-test, make specific assumptions about the distribution. While
such parametric tests can be very effective, even small deviations from these
assumptions can invalidate the test results [14]. By using non-parametric tests,
we therefore avoid the need to verify our samples satisfy the assumptions and
also ensure that the test results are robust to any undetected deviations from
the test assumptions.

To analyse statistical significance, we apply the Mann-Whitney-Wilcoxon or
rank-sum test [15]. The null hypothesis for this test is that the responses of the
two algorithms have identical distributions with equal medians; the alternative
hypothesis is that the distributions are different. We use a 5% significance level:
a p-value of < 5% rejects the test’s null hypothesis and indicates a statistically
significant difference in algorithm performance.

To analyse scientific significance, we calculate the Vargha-Delaney A statis-
tic as a measure of effect size compared to stochastic noise [16]. This statistic is
independent of the sample size and has a range of [0, 1]: a value of 0.5 indicates
no difference in algorithm performance; values between 0.5 and 1.0 indicate in-
creasingly large effect sizes where the first algorithm has the better performance;
values between 0.5 and 0.0 indicate increasingly large effect sizes where the sec-
ond algorithm has the better performance. The choice of what constitutes a
significant effect size can depend on context. In this case, we apply the guide-
lines of Vargha and Delaney [16] that an A statistic greater than 0.64, or less
than 0.36, indicates a ‘medium’ or ‘large’ effect size. We consider any comparison
demonstrating ‘medium’ or ‘large’ effect sizes as scientifically significant.

6.3 Results

The results of the comparison between the A% and A}, are presented in Table 5,
and between the AY and A, in Table 6. Highlighted in bold are p-values that
show a statistically significant difference in algorithm performance at the 5%
significance level. The Vargha-Delaney A statistic shows which algorithm has the
better performance: values greater than 0.5 indicate that A} performs better,
while values less than 0.5 indicate that A, and A, perform better. Values of
this statistic highlighted in bold indicate a medium or large effect size which we
consider to be scientifically significant.

The results in Table 5 show that Hypothesis 1 holds for two of the six prob-
lems: for Problems 1 and 5, the tuned crossover algorithm, A%, demonstrates
a superior performance compared to the tuned mutation algorithm, A% , that
is both statistically and scientifically significant. Using a similar analysis, the
results in Table 6 show that Hypothesis 2 holds for three of the six problems: for

Table 5. Comparison of Tuned Crossover Algorithm, A}, to Tuned Mutation Algo-
rithm, A,

Statistic Prob 1|Prob 2|Prob 3|Prob 4|Prob 5/Prob 6
rank-sum p-value <107%| 0.631|0.0266| 0.0653|< 107%|< 1075
Vargha-Delaney A statistic| 0.757| 0.491| 0.541| 0.533| 0.939| 0.588

Table 6. Comparison of Tuned Crossover Algorithm, A}, to Default Algorithm, A4

Statistic Prob 1|Prob 2(Prob 3|Prob 4(Prob 5/Prob 6
rank-sum p-value <107%| 0.8662|<107°%|< 107 %< 107° 1.00
Vargha-Delaney A statistic| 0.696| 0.503| 0.612| 0.739| 0.825| 0.500

Problems 1, 4, and 5, the tuned crossover algorithm, A%, demonstrates a supe-
rior performance compared to the default algorithm, A,, that is both statistically
and scientifically significant.

7 Conclusions & Further Work

The use of crossover has a significant effect in improving the performance of only
two problems out of six; it does not significantly outperform mutation on the
remaining four problems (as discussed above, we require a significant result to
demonstrate both statistical and scientific significance). This is consistent with
the conclusions of previous work. Moreover, since it is the outcome of rigorous
experimental methodology and robust data analysis, we are able to be very
confident in the validity of the result.

It is worth noting that A,, is a restricted form of mutation that will only use
fixed-length subtrees, and variable-sized mutation may prove even more com-
petitive with A.. This lends credence to the idea that crossover is often only a
macromutation operator, and a population-based paradigm using crossover may
not be most effective at solving the majority of these problems.

The next step in the investigation of the role of crossover and mutation is to
compare the performance of algorithms that use both genetic operators, and to
explore the performance of variations of the mutation algorithm.

The results also demonstrate the effectiveness of using a Design of Experi-
ments (DoE) methodology based on a factorial design in tuning GP algorithm
parameters: for three of the six problems this technique produced tuned param-
eter values that were significantly better that the default values. As described
above, we were surprised that a pilot study showed that this straightforward
DoE approach resulted in more accurately tuned parameters than a more so-
phisticated technique, Response Surface Methodology, and a more efficient ex-
perimental design, the Central Composite Design.

Further work will investigate the observed superiority of the DoE methodol-
ogy in tuning algorithm parameters and perform an exploration of the response
surfaces of GP algorithms in order to identify a reason for this superiority.

8

Acknowledgements

This work is supported by an EPSRC grant (EP/D050618/1), SEBASE: Soft-
ware Engineering By Automated SEarch.

References

1.

10.

11.

12.

13.

14.

15.

16.

Luke, S., Spector, L.: A comparison of crossover and mutation in genetic pro-
gramming. In: Genetic Programming 1997: Proceedings of the Second Annual
Conference, Morgan Kaufmann (1997) 240248

Luke, S., Spector, L.: A revised comparison of crossover and mutation in genetic
programming. In: Genetic Programming 1998: Proceedings of the Third Annual
Conference, Morgan Kaufmann (1998) 208-213

Angeline, P.J.: Comparing subtree crossover with macromutation. In: EP ’97:
Proceedings of the 6th International Conference on Evolutionary Programming,
Springer-Verlag (1997) 101-112

Montgomery, D.C.: Design and Analysis of Experiments. 6th edn. John Wiley &
Sons, Inc. (2005)

Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms.
In Goldwasser, M.H., Johnson, D.S., McGeoch, C.C., eds.: Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges. American Mathematical Society (2002) 215-250

. Online Experiment Source Code and Scripts:

http://www.cs.york.ac.uk/~drw/papers/eurogp2009/

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

Feldt, R., Nordin, P.: Using factorial experiments to evaluate the effect of genetic
programming parameters. In: Proceedings of the European Conference on Genetic
Programming, Springer-Verlag (2000) 271-282

Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to
find effective parameter settings for heuristics. Journal of Heuristics 7(1) (2001)
7797

ECJ: http://http://cs.gmu.edu/ eclab/projects/ecj/ (2008)

Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press (1994)

Myers, R.H., Montgomery, D.C.: Response surface methodology: process and prod-
uct optimization using designed experiments. Wiley Series in Probability and
Statistics. John Wiley & Sons, Inc. (2005)

Vadde, K.K., Syrotiuk, V.R., Montgomery, D.C.: Optimizing protocol interaction
using response surface methodology. IEEE Trans. Mob. Comput. 5(6) (2006) 627—
639

Leech, N.L., Onwuegbuzie, A.J.: A call for greater use of nonparametric statistics.
Technical report, US Dept. Education, Educational Resources Information Center
(2002)

Wilcoxon, F.: Individual comparisions by ranking methods. Biometrics Bulletin
1(6) (1945) 80-83

Vargha, A., Delaney, H.: A critique and improvement of the CL. common language
effect size statistics of McGraw and Wong. J. Educational and Behavioral Statistics
25(2) (2000) 101-132

	citation_temp.pdf
	http://eprints.gla.ac.uk/55371/

