4,303 research outputs found

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Faster subsequence recognition in compressed strings

    Full text link
    Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related to Lempel--Ziv compression. For an SLP-compressed text of length mˉ\bar m, and an uncompressed pattern of length nn, C{\'e}gielski et al. gave an algorithm for local subsequence recognition running in time O(mˉn2logn)O(\bar mn^2 \log n). We improve the running time to O(mˉn1.5)O(\bar mn^{1.5}). Our algorithm can also be used to compute the longest common subsequence between a compressed text and an uncompressed pattern in time O(mˉn1.5)O(\bar mn^{1.5}); the same problem with a compressed pattern is known to be NP-hard

    Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere

    Get PDF
    We calculate the high temperature partition functions for SU(Nc) or U(Nc) gauge theories in the deconfined phase on S^1 x S^3, with scalars, vectors, and/or fermions in an arbitrary representation, at zero 't Hooft coupling and large Nc, using analytical methods. We compare these with numerical results which are also valid in the low temperature limit and show that the Bekenstein entropy bound resulting from the partition functions for theories with any amount of massless scalar, fermionic, and/or vector matter is always satisfied when the zero-point contribution is included, while the theory is sufficiently far from a phase transition. We further consider the effect of adding massive scalar or fermionic matter and show that the Bekenstein bound is satisfied when the Casimir energy is regularized under the constraint that it vanishes in the large mass limit. These calculations can be generalized straightforwardly for the case of a different number of spatial dimensions.Comment: 32 pages, 12 figures. v2: Clarifications added. JHEP versio

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Comments on scaling limits of 4d N=2 theories

    Full text link
    We revisit the study of the maximally singular point in the Coulomb branch of 4d N=2 SU(N) gauge theory with N_f=2n flavors for N_f= 2, we find that the low-energy physics is described by two non-trivial superconformal field theories coupled to a magnetic SU(2) gauge group which is infrared free. (In the special case n=2, one of these theories is a theory of free hypermultiplets.) This observation removes a possible counter example to a conjectured a-theorem.Comment: 13 page

    Chiral primary one-point functions in the D3-D7 defect conformal field theory

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%C.F.K. and D.Y. were supported in part by FNU through grant number 272-08-0329. G.W.S. is supported by NSERC of Canada and by the Villum foundation through their Velux Visiting Professor program

    Microfluidic devices powered by integrated elasto-magnetic pumps (article)

    Get PDF
    This is the final version. Available on open access from the Royal Society of Chemistry via the DOI in this recordThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.2863We show how an asymmetric elasto-magnetic system provides a novel integrated pumping solution for lab-on-a-chip and point of care devices. This monolithic pumping solution, inspired by Purcell's 3-link swimmer, is integrated within a simple microfluidic device, bypassing the requirement of external connections. We experimentally prove that this system can provide tuneable fluid flow with a flow rate of up to 600 μL h-1. This fluid flow is achieved by actuating the pump using a weak, uniform, uniaxial, oscillating magnetic field, with field amplitudes in the range of 3-6 mT. Crucially, the fluid flow can be reversed by adjusting the driving frequency. We experimentally prove that this device can successfully operate on fluids with a range of viscosities, where pumping at higher viscosity correlates with a decreasing optimal driving frequency. The fluid flow produced by this device is understood here by examining the non-reciprocal motion of the elasto-magnetic component. This device has the capability to replace external pumping systems with a simple, integrated, lab-on-a-chip component.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Medical Research Council (MRC)Royal SocietyWellcome Trus

    Flavor from M5-branes

    Full text link
    We study various aspects of the defect conformal field theory that arises when placing a single M5-brane probe in AdS_4 x S^7. We derive the full set of fluctuation modes and dimensions of the corresponding dual operators. We argue that the latter does not depend on the presence of a non-trivial magnetic flux on the M5-brane world-volume. Finally we give a mass to the hypermultiplet living on the defect, and compute the resulting mesonic spectrum.Comment: 19 page

    Quantum Hall Effect in a Holographic Model

    Full text link
    We consider a holographic description of a system of strongly coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We study the system at finite temperature and charge density, and in the presence of a background magnetic field. We show that Minkowski-like embeddings that terminate above the horizon describe a family of quantum Hall states with filling fractions that are parameterized by a single discrete parameter. The quantization of the Hall conductivity is a direct consequence of the topological quantization of the fluxes. When the magnetic field is varied relative to the charge density away from these discrete filling fractions, the embeddings deform continuously into black-hole-like embeddings that enter the horizon and that describe metallic states. We also study the thermodynamics of this system and show that there is a first order phase transition at a critical temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the quantitative analysis. The qualitative results and conclusions are unchanged, with one exception: we show that the quantum Hall state embeddings, which exist for discrete values of the filling fraction, deform continuously into metallic state embeddings away from these filling fraction
    corecore