375 research outputs found

    Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival

    Get PDF
    The effects of the adenovirus Ad5 on basic host cell programs, such as cell-cycle regulation, were studied in a microarray analysis of human fibroblasts. About 2,000 genes were up- or down-regulated after Ad5 infection and Ad5 infection was shown to induce reversal of the quiescence program and recapitulation of the core serum response

    GOLEM: an interactive graph-based gene-ontology navigation and analysis tool

    Get PDF
    BACKGROUND: The Gene Ontology has become an extremely useful tool for the analysis of genomic data and structuring of biological knowledge. Several excellent software tools for navigating the gene ontology have been developed. However, no existing system provides an interactively expandable graph-based view of the gene ontology hierarchy. Furthermore, most existing tools are web-based or require an Internet connection, will not load local annotations files, and provide either analysis or visualization functionality, but not both. RESULTS: To address the above limitations, we have developed GOLEM (Gene Ontology Local Exploration Map), a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet at

    Finding function: evaluation methods for functional genomic data

    Get PDF
    BACKGROUND: Accurate evaluation of the quality of genomic or proteomic data and computational methods is vital to our ability to use them for formulating novel biological hypotheses and directing further experiments. There is currently no standard approach to evaluation in functional genomics. Our analysis of existing approaches shows that they are inconsistent and contain substantial functional biases that render the resulting evaluations misleading both quantitatively and qualitatively. These problems make it essentially impossible to compare computational methods or large-scale experimental datasets and also result in conclusions that generalize poorly in most biological applications. RESULTS: We reveal issues with current evaluation methods here and suggest new approaches to evaluation that facilitate accurate and representative characterization of genomic methods and data. Specifically, we describe a functional genomics gold standard based on curation by expert biologists and demonstrate its use as an effective means of evaluation of genomic approaches. Our evaluation framework and gold standard are freely available to the community through our website. CONCLUSION: Proper methods for evaluating genomic data and computational approaches will determine how much we, as a community, are able to learn from the wealth of available data. We propose one possible solution to this problem here but emphasize that this topic warrants broader community discussion

    Protein Complexes are Central in the Yeast Genetic Landscape

    Get PDF
    If perturbing two genes together has a stronger or weaker effect than expected, they are said to genetically interact. Genetic interactions are important because they help map gene function, and functionally related genes have similar genetic interaction patterns. Mapping quantitative (positive and negative) genetic interactions on a global scale has recently become possible. This data clearly shows groups of genes connected by predominantly positive or negative interactions, termed monochromatic groups. These groups often correspond to functional modules, like biological processes or complexes, or connections between modules. However it is not yet known how these patterns globally relate to known functional modules. Here we systematically study the monochromatic nature of known biological processes using the largest quantitative genetic interaction data set available, which includes fitness measurements for ∼5.4 million gene pairs in the yeast Saccharomyces cerevisiae. We find that only 10% of biological processes, as defined by Gene Ontology annotations, and less than 1% of inter-process connections are monochromatic. Further, we show that protein complexes are responsible for a surprisingly large fraction of these patterns. This suggests that complexes play a central role in shaping the monochromatic landscape of biological processes. Altogether this work shows that both positive and negative monochromatic patterns are found in known biological processes and in their connections and that protein complexes play an important role in these patterns. The monochromatic processes, complexes and connections we find chart a hierarchical and modular map of sensitive and redundant biological systems in the yeast cell that will be useful for gene function prediction and comparison across phenotypes and organisms. Furthermore the analysis methods we develop are applicable to other species for which genetic interactions will progressively become more available

    Discovery of biological networks from diverse functional genomic data

    Get PDF
    We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web

    Genomics in 2011: challenges and opportunities

    Get PDF
    As we come to the end of 2011, Genome Biology has asked some members of our Editorial Board for their views on the state of play in genomics. What was their favorite paper of 2011? What are the challenges in their particular research area? Who has had the biggest influence on their careers? What advice would they give to young researchers embarking on a career in research

    Genetic interactions reveal the evolutionary trajectories of duplicate genes

    Get PDF
    Duplicate genes show significantly fewer interactions than singleton genes, and functionally similar duplicates can exhibit dissimilar profiles because common interactions are ‘hidden' due to buffering.Genetic interaction profiles provide insights into evolutionary mechanisms of duplicate retention by distinguishing duplicates under dosage selection from those retained because of some divergence in function.The genetic interactions of duplicate genes evolve in an extremely asymmetric way and the directionality of this asymmetry correlates well with other evolutionary properties of duplicate genes.Genetic interaction profiles can be used to elucidate the divergent function of specific duplicate pairs

    Bringing order to protein disorder through comparative genomics and genetic interactions

    Get PDF
    Abstract Background Intrinsically disordered regions are widespread, especially in proteomes of higher eukaryotes. Recently, protein disorder has been associated with a wide variety of cellular processes and has been implicated in several human diseases. Despite its apparent functional importance, the sheer range of different roles played by protein disorder often makes its exact contribution difficult to interpret. Results We attempt to better understand the different roles of disorder using a novel analysis that leverages both comparative genomics and genetic interactions. Strikingly, we find that disorder can be partitioned into three biologically distinct phenomena: regions where disorder is conserved but with quickly evolving amino acid sequences (flexible disorder); regions of conserved disorder with also highly conserved amino acid sequences (constrained disorder); and, lastly, non-conserved disorder. Flexible disorder bears many of the characteristics commonly attributed to disorder and is associated with signaling pathways and multi-functionality. Conversely, constrained disorder has markedly different functional attributes and is involved in RNA binding and protein chaperones. Finally, non-conserved disorder lacks clear functional hallmarks based on our analysis. Conclusions Our new perspective on protein disorder clarifies a variety of previous results by putting them into a systematic framework. Moreover, the clear and distinct functional association of flexible and constrained disorder will allow for new approaches and more specific algorithms for disorder detection in a functional context. Finally, in flexible disordered regions, we demonstrate clear evolutionary selection of protein disorder with little selection on primary structure, which has important implications for sequence-based studies of protein structure and evolution

    Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes).</p> <p>Results</p> <p>We developed Nearest Neighbor Networks (NNN), a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods.</p> <p>Conclusion</p> <p>The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the analysis of large datasets, and its ability to span a wide range of biological functions with high precision.</p
    corecore