40 research outputs found

    Prolyl oligopeptidase inhibition attenuates the toxicity of a proteasomal inhibitor, lactacystin, in the alpha-synuclein overexpressing cell culture

    Get PDF
    Lewy bodies, the histopathological hallmarks of Parkinson's disease (PD), contain insoluble and aggregated alpha-synuclein (aSyn) and many other proteins, proposing a role for failure in protein degradation system in the PD pathogenesis. Proteasomal dysfunction has indeed been linked to PD and aSyn oligomers have been shown to inhibit proteasomes and autophagy. Our recent studies have shown that inhibitors of prolyl oligopeptidase (PREP) can prevent the aggregation and enhance the clearance of accumulated aSyn, and therefore, we wanted to study if PREP inhibition can overcome the aSyn aggregation and toxicity induced by lactacystin, a proteasomal inhibitor. The cells overexpressing human A30P or A53T mutated aSyn were incubated with lactacystin and a PREP inhibitor, KYP-2047, for 48 h. Theafter, the cells were fractioned, and the effects of lactacystin with/without 1 mu M KYP-2047 on aSyn aggregation and ubiquitin accumulation, cell viability and on autophagic markers (p62, Beclin1 and LC3BII) were studied. We found that KYP-2047 attenuated lactacystin-induced cell death in mutant aSyn overexpressing cells but not in non-overexpressing control cells. KYP-2047 reduced significantly SDS-insoluble high-molecular-weight aSyn oligomers that were in line with the cell viability results. In addition, significant reduction in protein accumulation marker, p62, was seen in SDS fraction while LC3BII, a marker for autophagosome formation, was increased, indicating to enhanced autophagy. Our results further streghten the possibilities for PREP inhibitors as a potential drug therapy against synucleinopathies and other protein aggregating diseases. (C) 2016 Elsevier Ireland Ltd. All rights reserved.Peer reviewe

    Deletion or inhibition of prolyl oligopeptidase blocks lithium-induced phosphorylation of GSK3b and Akt by activation of protein phosphatase 2A

    Get PDF
    Alterations in prolyl oligopeptidase (PREP) activity have been connected, for example, with bipolar and major depressive disorder, and several studies have reported that lack or inhibition of PREP blocks the effects of lithium on inositol 1,4,5-triphosphate (IP3) levels. However, the impact of PREP modulation on other intracellular targets of lithium, such as glycogen synthase kinase 3 beta (GSK3b) or protein kinase B (Akt), has not been studied. We recently found that PREP regulates protein phosphatase 2A (PP2A), and because GSK3b and Akt are PP2A substrates, we studied if PREP-related lithium insensitivity is dependent on PP2A. To assess this, HEK-293 and SH-SY5Y cells with PREP deletion or PREP inhibition (KYP-2047) were exposed to lithium, and thereafter, the phosphorylation levels of GSK3b and Akt were measured by Western blot. As expected, PREP deletion and inhibition blocked the lithium-induced phosphorylation on GSK3b and Akt in both cell lines. When lithium exposure was combined with okadaic acid, a PP2A inhibitor, KYP-2047 did not have effect on lithium-induced GSK3b and Akt phosphorylation. Therefore, we conclude that PREP deletion or inhibition blocks the intracellular effects of lithium on GSK3b and Akt via PP2A activation

    Prolyl Oligopeptidase Regulates Dopamine Transporter Oligomerization and Phosphorylation in a PKC- and ERK-Independent Manner

    Get PDF
    Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK

    Tetrazole as a Replacement of the Electrophilic Group in Characteristic Prolyl Oligopeptidase Inhibitors

    Get PDF
    4-Phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines were studied as prolyl oligopeptidase inhibitors. The compounds were more potent than expected from the assumption that the tetrazole would also here be a bioisostere of the carboxylic acid group and the corresponding carboxylic acids are at their best only weak inhibitors. The aminoacyl groups L-prolyl and L-alanyl gave potent inhibitors with IC50 values of 12 and 129 nM, respectively. This was in line with typical prolyl oligopeptidase inhibitors; however, we did observe a difference with N-methyl-L-alanyl, which gave potent inhibitors in typical prolyl oligopeptidase inhibitors but not in our novel compound series. Furthermore, all studied 4-phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines decreased alpha-synuclein dimerization at the concentration of 10 mu M, also when they were only weak inhibitors of the proteolytic activity of the enzyme with an IC50 value of 205 mu M. Molecular docking studies revealed that the compounds are likely to bind differently to the enzyme compared to typical prolyl oligopeptidase inhibitors represented in this study by 4-phenylbutanoyl-aminoacyl-2(S)-cyanopyrrolidines.Peer reviewe

    Prolyl Oligopeptidase Regulates Dopamine Transporter Phosphorylation in the Nigrostriatal Pathway of Mouse

    Get PDF
    Alpha-synuclein is the main component of Lewy bodies, a histopathological finding of Parkinson's disease. Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein and accelerates its aggregation in vitro. PREP enzyme inhibitors have been shown to block the alpha-synuclein aggregation process in vitro and in cellular models, and also to enhance the clearance of alpha-synuclein aggregates in transgenic mouse models. Moreover, PREP inhibitors have induced alterations in dopamine and metabolite levels, and dopamine transporter immunoreactivity in the nigrostriatal tissue. In this study, we characterized the role of PREP in the nigrostriatal dopaminergic and GABAergic systems of wild-type C57Bl/6 and PREP knockout mice, and the effects of PREP overexpression on these systems. Extracellular concentrations of dopamine and protein levels of phosphorylated dopamine transporter were increased and dopamine reuptake was decreased in the striatum of PREP knockout mice, suggesting increased internalization of dopamine transporter from the presynaptic membrane. Furthermore, PREP overexpression increased the level of dopamine transporters in the nigrostriatal tissue but decreased phosphorylated dopamine transporters in the striatum in wild-type mice. Our results suggest that PREP regulates the function of dopamine transporter, possibly by controlling the phosphorylation and transport of dopamine transporter into the striatum or synaptic membrane.Peer reviewe

    Removal of proteinase K resistant alpha Syn species does not correlate with cell survival in a virus vector-based Parkinson's disease mouse model

    Get PDF
    Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumu-lation of alpha-synuclein (alpha Syn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves alpha Syn-induced toxicity in various PD models by inducing autophagy and preventing alpha Syn aggregation. In this study, we wanted to study the effects of PREP inhibition on different alpha Syn species by using cell culture and in vivo models.We used Neuro2A cells with transient alpha Syn overexpression and oxidative stress or proteasomal inhibition -induced alpha Syn aggregation to assess the effect of KYP-2047 on soluble alpha Syn oligomers and on cell viability. Here, the levels of soluble alpha Syn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on alpha Syn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-alpha Syn mouse model, where the KYP-2047 treatment was initiated two-or four -weeks post injection.KYP-2047 and anle138b protected cells from alpha Syn toxicity but interestingly, KYP-2047 did not reduce soluble alpha Syn oligomers. In AAV-A53T-alpha Syn mouse model, KYP-2047 reduced significantly proteinase K-resistant alpha Syn oligomers and oxidative damage related to alpha Syn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole alpha Syn aggregation process in the pathology of PD and raise an important question about the forms of alpha Syn that are reasonable targets for PD drug therapy.Peer reviewe

    2-Imidazole as a Substitute for the Electrophilic Group Gives Highly Potent Prolyl Oligopeptidase Inhibitors

    Get PDF
    Different five-membered nitrogen-containing heteroaromatics in the position of the typical electrophilic group in prolyl oligopeptidase (PREP) inhibitors were investigated and compared to tetrazole. The 2-imidazoles were highly potent inhibitors of the proteolytic activity. The binding mode for the basic imidazole was studied by molecular docking as it was expected to differ from the acidic tetrazole. A new putative noncovalent binding mode with an interaction to His680 was found for the 2-imidazoles. Inhibition of the proteolytic activity did not correlate with the modulating effect on protein-protein-interaction-derived functions of PREP (i.e., dimerization of alpha-synuclein and autophagy). Among the highly potent PREP inhibiting 2-imidazoles, only one was also a potent modulator of PREP-catalyzed alpha-synuclein dimerization, indicating that the linker length on the opposite side of the molecule from the five-membered heteroaromatic is critical for the disconnected structure-activity relationships

    Prolyl oligopeptidase inhibition reduces alpha-synuclein aggregation in a cellular model of multiple system atrophy

    Get PDF
    Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha-synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease-modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP-2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP-2047 on a MSA cellular models, using rat OLN-AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25 alpha to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25 alpha. Similar to earlier studies, p25 alpha increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN-AS7 cells. In both cellular models, p25 alpha transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25 alpha did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 mu M KYP-2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN-AS7 cells but similar impact was not seen in MO3.13 cells
    corecore