7 research outputs found

    Genetic Transformation of Sweet Potato for Improved Tolerance to Stress: A Review

    Get PDF
    The sweet potato (Ipomoea batatas Lam) is a major staple food in many parts of the world. Sweet potato leaves and tubers are consumed as food and livestock feed. Biotic and abiotic stresses affect yield leading to a reduction in production. This review analyzes factors limiting sweet potato production and the progress made towards stress tolerance using genetic transformation. Genetic transformation could enhance yield, nutritional value and tolerance to stress. Transgenic sweet potatoes tolerant to biotic and abiotic stress, improved nutritional value and higher yields have been developed. Sweet potato expressing the endotoxin cry8Db, cry7A1 and cry3Ca genes showed lower sweet potato weevil infestation than non-transformed lines. Transgenic cultivar ‘Xushu18’ expressing the oryzacystatin-1 (OC1) gene showed enhanced resistance to sweet potato stem nematodes. Sweet potato line ‘Chikei 682-11’ expressing the coat protein (CP) exhibited resistance to the sweet potato feathery mottle virus (SPFMV). Transgenics expressing the rice cysteine inhibitor gene oryzacystatin-1 (OC1) also exhibited resistance to the SPFMV. Transgenic cultivar ‘Kokei’ expressing the spermidine synthetase gene FSPD1 had higher levels of spermine in the leaves and roots, and displayed enhanced tolerance to drought and salt stress. ‘Shangshu’ variety expressing the IbMas has shown enhanced tolerance to salt stress. Transgenic ‘Lixixiang’ expressing IbMIPSI showed an up-regulation of metabolites involved in stress response to drought, salinity and nematode infestation. Transgenic ‘Yulmi’ sweet potato transformed with copper/zinc superoxide dismutase (CuZnSOD) gene showed an enhanced tolerance to methyl viologen induced oxidative and chilling stress. Similarly, transformation of cultivar ‘Sushu-2’ with betaine aldehyde dehydrogenase (BADH) gene resulted in transgenics tolerant to salt, chilling and oxidative stress. Sweet potato varieties ‘Kokei14’ and ‘Yulmi’ transformed with the bar gene were shown to be tolerant to application of the herbicide Basta. The development of stress tolerant varieties will immensely increase the area under sweet potato production and eventually promote the adoption of sweet potato as a commercial crop. Sweet potato research and breeding for stress tolerance still faces technical and socio-political hurdles. Despite these challenges, genetic transformation remains a viable method with immense potential for the improvement of sweet potato. Key words: Sweet Potato (Ipomoea batatas Lam), Stress, Genetic Transformation, Transgeni

    Genetic Improvement of African Maize towards Drought Tolerance: A Review

    Get PDF
    Africa supports a population of over 1 billion people with over half of them depending on maize for food and feed either directly or indirectly.  Maize in Africa is affected by many stresses, both biotic and abiotic which significantly reduce yields and eventually lead to poor production.  Due to the high demand for maize in the region, different improvement strategies have been employed in an effort to improve production.  These include conventional breeding, molecular breeding, high throughput phenotyping techniques and remote sensing-based techniques.  Conventional breeding techniques such as open pollination have been used to develop drought avoiding maize varieties like the Kito open pollinated variety (OPV) of Tanzania and Guto OPV of Ethiopia.  A combination of conventional breeding and molecular biology techniques has led to improved breeding strategies like the Marker Assisted Back Crossing (MABC) and Marker Assisted Recurrent Selection (MARS).  These techniques have been used to improve drought tolerance in existing inbred maize lines like the CML 247 and CML 176.  Through genetic engineering, different genes including C4-PEPC, NPK1, betA, ZmNF-YB2, cspB, ZmPLC1 and TsVP have been cloned in maize.  Transgenic maize crops expressing these genes have shown increased tolerance to drought stress.  Although there is substantial progress towards developing drought tolerant maize, many African farmers are yet to benefit from this technology.  This is due to lack of an enabling policy framework as well as a limited financial investment in biotechnology research. Keywords: Maize, Drought tolerance, Genetic engineering; Biotechnology; Transgenic crop

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Phenotypic Diversity of Doum Palm (Hyphaene compressa), a Semi‐Domesticated Palm in the Arid and Semi‐Arid Regions of Kenya

    No full text
    Hyphaene compressa is an economically important palm in Africa. Despite its significant role in the livelihoods of rural communities, the diversity of doum palm is poorly documented and studied. In addition, it has no model descriptor that can aid such studies. Ninety H. compressa accessions collected from Northern, Eastern, and Coastal regions of Kenya were examined to determine the morphological variability of the vegetative and fruit traits of H. compressa and to identify its morphotypes for improvement. A total of 19 morphological characters including seven quantitative and 12 qualitative traits of fruit and vegetative traits were selected. Linear mixed-effects models, principal component analysis, and linear discriminant analyses were used to assess the variation in the morphological traits of doum palm based on the regions. Hierarchical clustering was performed to identify the morphotypes of H. compressa. There was variability in H. compressa morphological traits, particularly at the Kenyan Coast. All seven quantitative traits were able to effectively discriminate doum palm phenotypically p≤0.001. The 90 accessions clustered into five morphotypes designated as 1, 2, 3, 4, and 5. Morphotype 4 was specific only to the Coastal region. Morphotype 5 had the tallest trees with the biggest fruits and included palms from Eastern and Coastal regions making it the best morphotype for fruit traits. This study will inform the domestication, improvement, and conservation of H. compressa by selecting elite accessions

    Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.

    Get PDF
    BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen

    Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial

    No full text
    corecore